File: t_Normal_large.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (117 lines) | stat: -rwxr-xr-x 3,356 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
#! /usr/bin/env python

import openturns as ot

ot.TESTPREAMBLE()

# Big test case for correlated components

# Instantiate one distribution object
dim = 4
meanPoint = ot.Point(dim, 1.0)
sigma = ot.Point(dim, 1.0)
R = ot.CorrelationMatrix(dim)
for i in range(1, dim):
    R[i, i - 1] = 0.5

distribution = ot.Normal(meanPoint, sigma, R)

# Test for sampling
size = 1000
oneSample = distribution.getSample(size)
print(
    "sample of size ",
    size,
    " first=",
    repr(oneSample[0]),
    " last=",
    repr(oneSample[oneSample.getSize() - 1]),
)
mean = oneSample.computeMean()
print("mean error=%.6f" % ((mean - meanPoint).norm() / meanPoint.norm()))
covariance = oneSample.computeCovariance()
errorCovariance = 0.0
for i in range(dim):
    for j in range(dim):
        errorCovariance += abs(covariance[i, j] - sigma[i] * sigma[j] * R[i, j])
print("covariance error=%.6f" % (errorCovariance / (dim * dim)))

# Define a point
zero = ot.Point(dim, 0.0)

# Show PDF and CDF of zero point
zeroPDF = distribution.computePDF(zero)
zeroCDF = distribution.computeCDF(zero)
print(
    "Zero point = ",
    repr(zero),
    " pdf=%.6f" % zeroPDF,
    repr(zero),
    " cdf=%.6f" % zeroCDF,
    " density generator=%.6f" % distribution.computeDensityGenerator(0.0),
)

# Extract the marginals
for i in range(dim):
    margin = distribution.getMarginal(i)
    print("margin=", repr(margin))
    print("margin PDF=%.6f" % margin.computePDF(ot.Point(1)))
    print("margin CDF=%.6f" % margin.computeCDF(ot.Point(1)))
    print("margin quantile=", repr(margin.computeQuantile(0.5)))
    print("margin realization=", repr(margin.getRealization()))

# Extract a 2-D marginal
indices = [1, 0]
print("indices=", repr(indices))
margins = distribution.getMarginal(indices)
print("margins=", repr(margins))
print("margins PDF=%.6f" % margins.computePDF(ot.Point(2)))
print("margins CDF=%.6f" % margins.computeCDF(ot.Point(2)))
quantile = ot.Point(margins.computeQuantile(0.5))
print("margins quantile=", repr(quantile))
print("margins CDF(qantile)=%.6f" % margins.computeCDF(quantile))
print("margins realization=", repr(margins.getRealization()))

# Very big test case for independent components
dim = 200
meanPoint = ot.Point(dim, 0.1)
sigma = ot.Point(dim, 1.0)
distribution = ot.Normal(meanPoint, sigma, ot.IdentityMatrix(dim))
print("Has independent copula? ", distribution.hasIndependentCopula())

# Test for sampling
oneSample = distribution.getSample(size // 10)
print(
    "sample of size ",
    size,
    " first=",
    repr(oneSample[0]),
    " last=",
    repr(oneSample[oneSample.getSize() - 1]),
)
mean = oneSample.computeMean()
print("mean error=%.6f" % ((mean - meanPoint).norm() / meanPoint.norm()))
covariance = oneSample.computeCovariance()
errorCovariance = 0.0
for i in range(dim):
    for j in range(dim):
        if i == j:
            temp = sigma[i] * sigma[j]
        else:
            temp = 0.0
    errorCovariance += abs(covariance[i, j] - temp)
print("covariance error=%.6f" % (errorCovariance / (dim * dim)))

# Define a point
zero = ot.Point(dim, 0.0)

# Show PDF and CDF of zero point
zeroPDF = distribution.computePDF(zero)
zeroCDF = distribution.computeCDF(zero)
print(
    "Zero point= ",
    repr(zero),
    " pdf=%.6f" % zeroPDF,
    " cdf=%.6f" % zeroCDF,
    " density generator=%.6f" % distribution.computeDensityGenerator(0.0),
)