1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
#! /usr/bin/env python
import openturns as ot
import openturns.testing as ott
ot.TESTPREAMBLE()
def cleanScalar(inScalar):
if abs(inScalar) < 1.0e-10:
inScalar = 0.0
return inScalar
def cleanPoint(inPoint):
dim = inPoint.getDimension()
for i in range(dim):
if abs(inPoint[i]) < 1.0e-10:
inPoint[i] = 0.0
return inPoint
ot.PlatformInfo.SetNumericalPrecision(5)
# Instantiate one distribution object
for dim in range(1, 5):
meanPoint = [0.0] * dim
sigma = [1.0 + i for i in range(dim)]
R = ot.CorrelationMatrix(dim)
for i in range(1, dim):
R[i, i - 1] = 0.5
distribution = ot.Normal(meanPoint, sigma, R)
distribution.setName("A normal distribution")
description = ["Marginal " + str(1 + i) for i in range(dim)]
distribution.setDescription(description)
print("Parameters collection=", repr(distribution.getParametersCollection()))
print("Standard representative=", distribution.getStandardRepresentative())
print("Distribution ", repr(distribution))
print("Distribution ", distribution)
print("Covariance ", repr(distribution.getCovariance()))
# Is this distribution elliptical ?
print("Elliptical = ", distribution.isElliptical())
# Is this distribution continuous ?
print("Continuous = ", distribution.isContinuous())
# Test for realization of distribution
oneRealization = distribution.getRealization()
print("oneRealization=", repr(oneRealization))
# Define a point
point = ot.Point(distribution.getDimension(), 0.5)
print("Point= ", repr(point))
# Show PDF and CDF of point
eps = 1e-5
# derivative of PDF with respect to its arguments
DDF = distribution.computeDDF(point)
print("ddf =", repr(cleanPoint(DDF)))
# PDF value
LPDF = distribution.computeLogPDF(point)
print("log pdf=%.6f" % LPDF)
PDF = distribution.computePDF(point)
print("pdf =%.6f" % PDF)
CF = distribution.computeCharacteristicFunction(point)
print("characteristic function=%.6f+%.6fi" % (CF.real, CF.imag))
LCF = distribution.computeLogCharacteristicFunction(point)
print("log characteristic function=%.6f+%.6fi" % (LCF.real, LCF.imag))
CDF = distribution.computeCDF(point)
print("cdf=%.6f" % CDF)
CCDF = distribution.computeComplementaryCDF(point)
print("ccdf=%.6f" % CCDF)
PDFgr = distribution.computePDFGradient(point)
print("pdf gradient =", repr(cleanPoint(PDFgr)))
# quantile
if dim < 4:
quantile = distribution.computeQuantile(0.95)
print("quantile=", repr(quantile))
print("cdf(quantile)=%.6f" % distribution.computeCDF(quantile))
# Get 95% survival function
inverseSurvival = ot.Point(distribution.computeInverseSurvivalFunction(0.95))
print("InverseSurvival=", repr(inverseSurvival))
print(
"Survival(inverseSurvival)=%.6f"
% distribution.computeSurvivalFunction(inverseSurvival)
)
print("entropy=%.6f" % distribution.computeEntropy())
# Confidence regions
if distribution.getDimension() <= 2:
(
interval,
threshold,
) = distribution.computeMinimumVolumeIntervalWithMarginalProbability(0.95)
print("Minimum volume interval=", interval)
print("threshold=", ot.Point(1, threshold))
levelSet, beta = distribution.computeMinimumVolumeLevelSetWithThreshold(0.95)
print("Minimum volume level set=", levelSet)
print("beta=", ot.Point(1, beta))
(
interval,
beta,
) = distribution.computeBilateralConfidenceIntervalWithMarginalProbability(0.95)
print("Bilateral confidence interval=", interval)
print("beta=", ot.Point(1, beta))
(
interval,
beta,
) = distribution.computeUnilateralConfidenceIntervalWithMarginalProbability(
0.95, False
)
print("Unilateral confidence interval (lower tail)=", interval)
print("beta=", ot.Point(1, beta))
(
interval,
beta,
) = distribution.computeUnilateralConfidenceIntervalWithMarginalProbability(
0.95, True
)
print("Unilateral confidence interval (upper tail)=", interval)
print("beta=", ot.Point(1, beta))
mean = distribution.getMean()
print("mean=", repr(mean))
standardDeviation = distribution.getStandardDeviation()
print("standard deviation=", repr(standardDeviation))
skewness = distribution.getSkewness()
print("skewness=", repr(skewness))
kurtosis = distribution.getKurtosis()
print("kurtosis=", repr(kurtosis))
roughness = distribution.getRoughness()
print("roughness=%.6f" % roughness)
covariance = distribution.getCovariance()
print("covariance=", repr(covariance))
parameters = distribution.getParametersCollection()
print("parameters=", repr(parameters))
# Specific to this distribution
beta = point.normSquare()
densityGenerator = distribution.computeDensityGenerator(beta)
print("density generator=%.6f" % densityGenerator)
print(
"pdf via density generator=%.6f"
% ot.EllipticalDistribution.computePDF(distribution, point)
)
densityGeneratorDerivative = distribution.computeDensityGeneratorDerivative(beta)
print("density generator derivative =%.6f" % densityGeneratorDerivative)
print(
"density generator derivative (FD)=%.6f"
% cleanScalar(
(
distribution.computeDensityGenerator(beta + eps)
- distribution.computeDensityGenerator(beta - eps)
)
/ (2.0 * eps)
)
)
densityGeneratorSecondDerivative = (
distribution.computeDensityGeneratorSecondDerivative(beta)
)
print(
"density generator second derivative =%.6f"
% densityGeneratorSecondDerivative
)
print(
"density generator second derivative (FD)=%.6f"
% cleanScalar(
(
distribution.computeDensityGeneratorDerivative(beta + eps)
- distribution.computeDensityGeneratorDerivative(beta - eps)
)
/ (2.0 * eps)
)
)
# Compute the radial CDF
radius = 2.0
print(
"Radial CDF(%.6f" % radius,
")=%.6f" % distribution.computeRadialDistributionCDF(radius),
)
x = 0.6
y = [0.2] * (dim - 1)
print("conditional PDF=%.6f" % distribution.computeConditionalPDF(x, y))
print("conditional CDF=%.6f" % distribution.computeConditionalCDF(x, y))
print("conditional quantile=%.6f" % distribution.computeConditionalQuantile(x, y))
pt = ot.Point([i + 1.5 for i in range(dim)])
print(
"sequential conditional PDF=",
distribution.computeSequentialConditionalPDF(point),
)
resCDF = distribution.computeSequentialConditionalCDF(pt)
print("sequential conditional CDF(", pt, ")=", resCDF)
print(
"sequential conditional quantile(",
resCDF,
")=",
distribution.computeSequentialConditionalQuantile(resCDF),
)
# Extract the marginals
for i in range(dim):
margin = distribution.getMarginal(i)
print("margin=", repr(margin))
print("margin PDF=%.6f" % margin.computePDF([0.5]))
print("margin CDF=%.6f" % margin.computeCDF([0.5]))
print("margin quantile=", repr(margin.computeQuantile(0.95)))
print("margin realization=", repr(margin.getRealization()))
if dim >= 2:
# Extract a 2-D marginal
indices = [1, 0]
print("indices=", repr(indices))
margins = distribution.getMarginal(indices)
print("margins=", repr(margins))
print("margins PDF=%.6f" % margins.computePDF([0.5] * 2))
print("margins CDF=%.6f" % margins.computeCDF([0.5] * 2))
quantile = margins.computeQuantile(0.95)
print("margins quantile=", repr(quantile))
print("margins CDF(qantile)=%.6f" % margins.computeCDF(quantile))
print("margins realization=", repr(margins.getRealization()))
chol = distribution.getCholesky()
invChol = distribution.getInverseCholesky()
print("chol=", repr(chol))
print("invchol=", repr(invChol))
print("chol*t(chol)=", repr((chol * chol.transpose())))
ott.assert_almost_equal((chol * invChol), ot.IdentityMatrix(dim))
ot.Log.Show(ot.Log.TRACE)
validation = ott.DistributionValidation(distribution)
if dim > 2:
validation.skipMoments() # slow
validation.skipCorrelation() # slow
validation.run()
# non-spd cov
dist = ot.Normal(
[0] * 3, ot.CovarianceMatrix([[1.0, 1.0, 0.0], [1.0, 1.0, 0.0], [0.0, 0.0, 1.0]])
)
sample = dist.getSample(10)
|