File: t_OptimalLHSExperiment_std.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (187 lines) | stat: -rwxr-xr-x 6,583 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
#! /usr/bin/env python

import openturns as ot

ot.TESTPREAMBLE()

# Defining parameters
dimension = 3
size = 100

# Build standard LHS algorithm
distribution = ot.JointDistribution([ot.Uniform(0.0, 1.0)] * dimension)
lhs = ot.LHSExperiment(distribution, size)
lhs.setRandomShift(False)  # centered
lhs.setAlwaysShuffle(True)  # randomized

# print the object
print("lhs=", lhs)
bounds = distribution.getRange()
print("Bounds of uniform distributions=", bounds)

# Generate design without optimization
design = lhs.generate()
print("design=", design)

# Defining space fillings
spaceFillingC2 = ot.SpaceFillingC2()
spaceFillingPhiP = ot.SpaceFillingPhiP()

# print the criteria on this design
print(
    "PhiP=%f, C2=%f"
    % (ot.SpaceFillingPhiP().evaluate(design), ot.SpaceFillingC2().evaluate(design))
)

# Parameters for drawing design ==> Number of points are for the "grid"
Nx = 50
Ny = 50

# --------------------------------------------------#
# ------------ MonteCarlo algorithm  ------------- #
# --------------------------------------------------#

# RandomBruteForce MonteCarlo with N designs
N = 100

# 1) LHS with C2 optimization
optimalLHSAlgorithm = ot.MonteCarloLHS(lhs, N, spaceFillingC2)
# print lhs
print("lhs=", optimalLHSAlgorithm)
design = optimalLHSAlgorithm.generate()
print("Generating design with MonteCarlo and C2 space filling=", design)
result = optimalLHSAlgorithm.getResult()
print("History criterion=", result.getAlgoHistory())
print("Final criteria: C2=%f, PhiP=%f" % (result.getC2(), result.getPhiP()))

# Criterion graph ==> Graph object
criterionGraph = result.drawHistoryCriterion()

# 2) LHS with PhiP optimization (=mindist optim)
optimalLHSAlgorithm = ot.MonteCarloLHS(lhs, N, spaceFillingPhiP)
print("lhs=", optimalLHSAlgorithm)
design = optimalLHSAlgorithm.generate()
print("Generating design with MonteCarlo and PhiP optimum=", design)
result = optimalLHSAlgorithm.getResult()
print("History criterion=", result.getAlgoHistory())
print("Final criteria: C2=%f, PhiP=%f" % (result.getC2(), result.getPhiP()))

# Graph of criterion
criterionGraph = result.drawHistoryCriterion()

# --------------------------------------------------#
# ------------- Simulated annealing  ------------- #
# --------------------------------------------------#
# Defining temperature profil ==> TO, iterations...
T0 = 10.0
iMax = 2000
c = 0.95
# Care, c should be in ]0,1[
# Geometric profil
geomProfile = ot.GeometricProfile(T0, c, iMax)

# 3) Simulated Annealing LHS with geometric temperature, C2 optimization
optimalLHSAlgorithm = ot.SimulatedAnnealingLHS(lhs, spaceFillingC2, geomProfile)
print("lhs=", optimalLHSAlgorithm)
design = optimalLHSAlgorithm.generate()
print(
    "Generating design using SimulatedAnnealing geometric temperature & C2 criterion=",
    design,
)
result = optimalLHSAlgorithm.getResult()
history = result.getAlgoHistory()
print("History criterion=", history[:, 0])
print("History temperature=", history[:, 1])
print("History probability=", history[:, 2])
print("Final criteria: C2=%f, PhiP=%f" % (result.getC2(), result.getPhiP()))

# Criteria drawing
# SA algorithms returns also Probability & temperature
criterionGraph = result.drawHistoryCriterion()
probaGraph = result.drawHistoryProbability()
tempGraph = result.drawHistoryTemperature()

# 4) Simulated Annealing LHS with geometric temperature, PhiP optimization
optimalLHSAlgorithm = ot.SimulatedAnnealingLHS(lhs, spaceFillingPhiP, geomProfile)
print("lhs=", optimalLHSAlgorithm)
design = optimalLHSAlgorithm.generate()
print(
    "Generating design using SimulatedAnnealing geometric temperature & C2 criterion=",
    design,
)
result = optimalLHSAlgorithm.getResult()
history = result.getAlgoHistory()
print("History criterion=", history[:, 0])
print("History temperature=", history[:, 1])
print("History probability=", history[:, 2])
print("Final criteria: C2=%f, PhiP=%f" % (result.getC2(), result.getPhiP()))

# Criteria drawing
criterionGraph = result.drawHistoryCriterion()
probaGraph = result.drawHistoryProbability()
tempGraph = result.drawHistoryTemperature()

# Linear profil
linearProfile = ot.LinearProfile(T0, iMax)

# 5) Simulated Annealing LHS with linear temperature, C2 optimization
optimalLHSAlgorithm = ot.SimulatedAnnealingLHS(lhs, spaceFillingC2, linearProfile)
print("lhs=", optimalLHSAlgorithm)
design = optimalLHSAlgorithm.generate()
print(
    "Generating design using linear temperature SimulatedAnnealing & C2 criterion =",
    design,
)
result = optimalLHSAlgorithm.getResult()
history = result.getAlgoHistory()
print("History criterion=", history[:, 0])
print("History temperature=", history[:, 1])
print("History probability=", history[:, 2])
print("Final criteria: C2=%f, PhiP=%f" % (result.getC2(), result.getPhiP()))

# Criteria drawing
criterionGraph = result.drawHistoryCriterion()
probaGraph = result.drawHistoryProbability()
tempGraph = result.drawHistoryTemperature()

# 6) Simulated Annealing LHS with linear temperature, PhiP optimization
optimalLHSAlgorithm = ot.SimulatedAnnealingLHS(lhs, spaceFillingPhiP, linearProfile)
print("lhs=", optimalLHSAlgorithm)
design = optimalLHSAlgorithm.generate()
print(
    "Generating design using linear temperature SimulatedAnnealing & PhiP criterion =",
    design,
)
result = optimalLHSAlgorithm.getResult()
history = result.getAlgoHistory()
print("History criterion=", history[:, 0])
print("History temperature=", history[:, 1])
print("History probability=", history[:, 2])
print("Final criteria: C2=%f, PhiP=%f" % (result.getC2(), result.getPhiP()))

# Criteria drawing
criterionGraph = result.drawHistoryCriterion()
probaGraph = result.drawHistoryProbability()
tempGraph = result.drawHistoryTemperature()

# 7) Simulated Annealing LHS with linear temperature, Phi optimization and nStart > 1
#  Result is a collection of LHSResult
nStart = 10
optimalDesign = optimalLHSAlgorithm.generateWithRestart(nStart)
for i in range(nStart):
    result = optimalLHSAlgorithm.getResult()
    design = result.getOptimalDesign(i)
    history = result.getAlgoHistory(i)
    print(
        "Generating design using linear temperature SimulatedAnnealing & PhiP criterion =",
        design,
    )
    print("History criterion=", history[:, 0])
    # print("History temperature=", history[:,1])
    # print("History probability=", history[:,2])
    print("Final criteria: C2=%f, PhiP=%f" % (result.getC2(i), result.getPhiP(i)))

    # decreasing criterion
    criterionGraph = result.drawHistoryCriterion(i)
    probaGraph = result.drawHistoryProbability(i)
    tempGraph = result.drawHistoryTemperature(i)