File: t_OrdinalSumCopula_std.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (133 lines) | stat: -rwxr-xr-x 4,434 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
#! /usr/bin/env python

import openturns as ot
import openturns.testing as ott

ot.TESTPREAMBLE()

# Instantiate one distribution object
R = ot.CorrelationMatrix(2)
R[0, 1] = 0.5
collection = [ot.FrankCopula(3.0), ot.NormalCopula(R), ot.ClaytonCopula(2.0)]
bounds = [0.2, 0.7]
copula = ot.OrdinalSumCopula(collection, bounds)
print("Copula ", copula)

# Is this copula elliptical ?
print("Elliptical distribution= ", copula.isElliptical())

# Is this copula continuous ?
print("Continuous = ", copula.isContinuous())

# Is this copula elliptical ?
print("Elliptical = ", copula.hasEllipticalCopula())

# Is this copula independent ?
print("Independent = ", copula.hasIndependentCopula())

# Test for realization of copula
oneRealization = copula.getRealization()
print("oneRealization=", oneRealization)

# Test for sampling
size = 10000
oneSample = copula.getSample(size)
print("oneSample first=", oneSample[0], " last=", oneSample[size - 1])
print("mean=", oneSample.computeMean())
precision = ot.PlatformInfo.GetNumericalPrecision()
ot.PlatformInfo.SetNumericalPrecision(5)
print("covariance=", oneSample.computeCovariance())
ot.PlatformInfo.SetNumericalPrecision(precision)

# Define a point
dim = copula.getDimension()
point = [0.6] * dim
print("Point= ", point)

# Show PDF and CDF of point
# Scalar eps(1e-5)
DDF = copula.computeDDF(point)
print("ddf     =", DDF)
PDF = copula.computePDF(point)
print("pdf     =%.5f" % PDF)
CDF = copula.computeCDF(point)
print("cdf=%.5f" % CDF)
Survival = copula.computeSurvivalFunction(point)
print("Survival      =%.5f" % Survival)
print("Survival (ref)=%.5f" % copula.computeSurvivalFunction(point))
InverseSurvival = copula.computeInverseSurvivalFunction(0.95)
print("Inverse survival=", InverseSurvival)
print(
    "Survival(inverse survival)=%.5f" % copula.computeSurvivalFunction(InverseSurvival)
)
# Get 50% quantile
quantile = copula.computeQuantile(0.5)
print("Quantile=", quantile)
print("CDF(quantile)=", copula.computeCDF(quantile))

if dim <= 2:
    # Confidence regions
    interval, threshold = copula.computeMinimumVolumeIntervalWithMarginalProbability(
        0.95
    )
    print("Minimum volume interval=", interval)
    print("threshold=%.5f" % threshold)
    levelSet, beta = copula.computeMinimumVolumeLevelSetWithThreshold(0.95)
    print("Minimum volume level set=", levelSet)
    print("beta=%.5f" % beta)
    interval, beta = copula.computeBilateralConfidenceIntervalWithMarginalProbability(
        0.95
    )
    print("Bilateral confidence interval=", interval)
    print("beta=%.5f" % beta)
    interval, beta = copula.computeUnilateralConfidenceIntervalWithMarginalProbability(
        0.95, False
    )
    print("Unilateral confidence interval (lower tail)=", interval)
    print("beta=%.5f" % beta)
    interval, beta = copula.computeUnilateralConfidenceIntervalWithMarginalProbability(
        0.95, True
    )
    print("Unilateral confidence interval (upper tail)=", interval)
    print("beta=%.5f" % beta)

    print("entropy=%.5f" % copula.computeEntropy())
    print(
        "entropy (MC)=%.5f"
        % -copula.computeLogPDF(copula.getSample(1000000)).computeMean()[0]
    )
mean = copula.getMean()
print("mean=", mean)
precision = ot.PlatformInfo.GetNumericalPrecision()
ot.PlatformInfo.SetNumericalPrecision(5)
# Covariance and correlation
covariance = copula.getCovariance()
print("covariance=", covariance)
correlation = copula.getCorrelation()
print("correlation=", correlation)
spearman = copula.getSpearmanCorrelation()
print("spearman=", spearman)
kendall = copula.getKendallTau()
print("kendall=", kendall)
ot.PlatformInfo.SetNumericalPrecision(precision)
parameters = copula.getParametersCollection()
print("parameters=", parameters)
x = 0.6
y = [0.2] * (dim - 1)
print("conditional PDF=%.6f" % copula.computeConditionalPDF(x, y))
print("conditional CDF=%.6f" % copula.computeConditionalCDF(x, y))
print("conditional quantile=%.6f" % copula.computeConditionalQuantile(x, y))
pt = ot.Point([0.1 * i + 0.05 for i in range(dim)])
print("sequential conditional PDF=", copula.computeSequentialConditionalPDF(point))
resCDF = copula.computeSequentialConditionalCDF(pt)
print("sequential conditional CDF(", pt, ")=", resCDF)
print(
    "sequential conditional quantile(",
    resCDF,
    ")=",
    copula.computeSequentialConditionalQuantile(resCDF),
)

ot.Log.Show(ot.Log.TRACE)
validation = ott.DistributionValidation(copula)
validation.run()