1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
|
#! /usr/bin/env python
import openturns as ot
import openturns.testing as ott
ot.TESTPREAMBLE()
# Instantiate one distribution object
R = ot.CorrelationMatrix(2)
R[0, 1] = 0.5
collection = [ot.FrankCopula(3.0), ot.NormalCopula(R), ot.ClaytonCopula(2.0)]
bounds = [0.2, 0.7]
copula = ot.OrdinalSumCopula(collection, bounds)
print("Copula ", copula)
# Is this copula elliptical ?
print("Elliptical distribution= ", copula.isElliptical())
# Is this copula continuous ?
print("Continuous = ", copula.isContinuous())
# Is this copula elliptical ?
print("Elliptical = ", copula.hasEllipticalCopula())
# Is this copula independent ?
print("Independent = ", copula.hasIndependentCopula())
# Test for realization of copula
oneRealization = copula.getRealization()
print("oneRealization=", oneRealization)
# Test for sampling
size = 10000
oneSample = copula.getSample(size)
print("oneSample first=", oneSample[0], " last=", oneSample[size - 1])
print("mean=", oneSample.computeMean())
precision = ot.PlatformInfo.GetNumericalPrecision()
ot.PlatformInfo.SetNumericalPrecision(5)
print("covariance=", oneSample.computeCovariance())
ot.PlatformInfo.SetNumericalPrecision(precision)
# Define a point
dim = copula.getDimension()
point = [0.6] * dim
print("Point= ", point)
# Show PDF and CDF of point
# Scalar eps(1e-5)
DDF = copula.computeDDF(point)
print("ddf =", DDF)
PDF = copula.computePDF(point)
print("pdf =%.5f" % PDF)
CDF = copula.computeCDF(point)
print("cdf=%.5f" % CDF)
Survival = copula.computeSurvivalFunction(point)
print("Survival =%.5f" % Survival)
print("Survival (ref)=%.5f" % copula.computeSurvivalFunction(point))
InverseSurvival = copula.computeInverseSurvivalFunction(0.95)
print("Inverse survival=", InverseSurvival)
print(
"Survival(inverse survival)=%.5f" % copula.computeSurvivalFunction(InverseSurvival)
)
# Get 50% quantile
quantile = copula.computeQuantile(0.5)
print("Quantile=", quantile)
print("CDF(quantile)=", copula.computeCDF(quantile))
if dim <= 2:
# Confidence regions
interval, threshold = copula.computeMinimumVolumeIntervalWithMarginalProbability(
0.95
)
print("Minimum volume interval=", interval)
print("threshold=%.5f" % threshold)
levelSet, beta = copula.computeMinimumVolumeLevelSetWithThreshold(0.95)
print("Minimum volume level set=", levelSet)
print("beta=%.5f" % beta)
interval, beta = copula.computeBilateralConfidenceIntervalWithMarginalProbability(
0.95
)
print("Bilateral confidence interval=", interval)
print("beta=%.5f" % beta)
interval, beta = copula.computeUnilateralConfidenceIntervalWithMarginalProbability(
0.95, False
)
print("Unilateral confidence interval (lower tail)=", interval)
print("beta=%.5f" % beta)
interval, beta = copula.computeUnilateralConfidenceIntervalWithMarginalProbability(
0.95, True
)
print("Unilateral confidence interval (upper tail)=", interval)
print("beta=%.5f" % beta)
print("entropy=%.5f" % copula.computeEntropy())
print(
"entropy (MC)=%.5f"
% -copula.computeLogPDF(copula.getSample(1000000)).computeMean()[0]
)
mean = copula.getMean()
print("mean=", mean)
precision = ot.PlatformInfo.GetNumericalPrecision()
ot.PlatformInfo.SetNumericalPrecision(5)
# Covariance and correlation
covariance = copula.getCovariance()
print("covariance=", covariance)
correlation = copula.getCorrelation()
print("correlation=", correlation)
spearman = copula.getSpearmanCorrelation()
print("spearman=", spearman)
kendall = copula.getKendallTau()
print("kendall=", kendall)
ot.PlatformInfo.SetNumericalPrecision(precision)
parameters = copula.getParametersCollection()
print("parameters=", parameters)
x = 0.6
y = [0.2] * (dim - 1)
print("conditional PDF=%.6f" % copula.computeConditionalPDF(x, y))
print("conditional CDF=%.6f" % copula.computeConditionalCDF(x, y))
print("conditional quantile=%.6f" % copula.computeConditionalQuantile(x, y))
pt = ot.Point([0.1 * i + 0.05 for i in range(dim)])
print("sequential conditional PDF=", copula.computeSequentialConditionalPDF(point))
resCDF = copula.computeSequentialConditionalCDF(pt)
print("sequential conditional CDF(", pt, ")=", resCDF)
print(
"sequential conditional quantile(",
resCDF,
")=",
copula.computeSequentialConditionalQuantile(resCDF),
)
ot.Log.Show(ot.Log.TRACE)
validation = ott.DistributionValidation(copula)
validation.run()
|