File: t_ParametrizedDistribution_std.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (109 lines) | stat: -rwxr-xr-x 3,884 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
#! /usr/bin/env python

import openturns as ot
import openturns.testing as ott


parameters = ot.GammaMuSigma(0.1, 0.489898, -0.5)
distribution = ot.ParametrizedDistribution(parameters)

print("Distribution ", distribution)

# Is this distribution elliptical ?
print("Elliptical = ", distribution.isElliptical())

# Is this distribution continuous ?
print("Continuous = ", distribution.isContinuous())

# Test for realization of distribution
oneRealization = distribution.getRealization()
print("oneRealization=", oneRealization)

# Define a point
point = ot.Point(distribution.getDimension(), 1.0)
print("Point= ", point)

# Show PDF and CDF of point
DDF = distribution.computeDDF(point)
print("ddf     =", DDF)
LPDF = distribution.computeLogPDF(point)
print("log pdf= %.6g" % LPDF)
PDF = distribution.computePDF(point)
print("pdf     =%.6g" % PDF)
CDF = distribution.computeCDF(point)
print("cdf= %.6g" % CDF)
CCDF = distribution.computeComplementaryCDF(point)
print("ccdf= %.6g" % CCDF)
Survival = distribution.computeSurvivalFunction(point)
print("survival= %.6g" % Survival)
CF = distribution.computeCharacteristicFunction(point[0])
print("characteristic function=(%.6g, %.6g)" % (CF.real, CF.imag))
LCF = distribution.computeLogCharacteristicFunction(point[0])
print("log characteristic function=(%.6g, %.6g)" % (LCF.real, LCF.imag))
PDFgr = distribution.computePDFGradient(point)
quantile = distribution.computeQuantile(0.95)
print("quantile=", quantile)
print("cdf(quantile)=", distribution.computeCDF(quantile))
# Get 95% survival function
inverseSurvival = ot.Point(distribution.computeInverseSurvivalFunction(0.95))
print("InverseSurvival=", repr(inverseSurvival))
print(
    "Survival(inverseSurvival)=%.6f"
    % distribution.computeSurvivalFunction(inverseSurvival)
)

# Confidence regions
interval, threshold = distribution.computeMinimumVolumeIntervalWithMarginalProbability(
    0.95
)
ott.assert_almost_equal(interval.getLowerBound(), [-0.49937], 1e-4, 0.0)
ott.assert_almost_equal(interval.getUpperBound(), [1.06337], 1e-4, 0.0)
print("threshold=", ot.Point(1, threshold))
levelSet, beta = distribution.computeMinimumVolumeLevelSetWithThreshold(0.95)
print("Minimum volume level set=", levelSet)
print("beta=", ot.Point(1, beta))
interval, beta = distribution.computeBilateralConfidenceIntervalWithMarginalProbability(
    0.95
)
print("Bilateral confidence interval=", interval)
print("beta=", ot.Point(1, beta))
(
    interval,
    beta,
) = distribution.computeUnilateralConfidenceIntervalWithMarginalProbability(0.95, False)
print("Unilateral confidence interval (lower tail)=", interval)
print("beta=", ot.Point(1, beta))
(
    interval,
    beta,
) = distribution.computeUnilateralConfidenceIntervalWithMarginalProbability(0.95, True)
print("Unilateral confidence interval (upper tail)=", interval)
print("beta=", ot.Point(1, beta))

mean = distribution.getMean()
print("mean=", mean)
covariance = distribution.getCovariance()
print("covariance=", covariance)
correlation = distribution.getCorrelation()
print("correlation=", correlation)
spearman = distribution.getSpearmanCorrelation()
print("spearman=", spearman)
kendall = distribution.getKendallTau()
print("kendall=", kendall)
parameters = distribution.getParametersCollection()
print("parameters=", parameters)
print("Standard representative=", distribution.getStandardRepresentative())

cpdf = distribution.computeConditionalPDF(0.0, [])
print(f"conditional PDF={cpdf:.6f}")
scpdf = distribution.computeSequentialConditionalPDF([0.0])
print(f"sequential conditional PDF={scpdf}")
ccdf = distribution.computeConditionalCDF(0.0, [])
print(f"conditional CDF={ccdf:.6f}")
sccdf = distribution.computeSequentialConditionalCDF([0.0])
print(f"sequential conditional CDF={sccdf}")

ot.RandomGenerator.SetSeed(2)
ot.Log.Show(ot.Log.TRACE)
validation = ott.DistributionValidation(distribution)
validation.run()