1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
|
#!/usr/bin/env python
import openturns as ot
import openturns.experimental as otexp
import openturns.testing as ott
ot.TESTPREAMBLE()
R = ot.CorrelationMatrix(3)
R[1, 0] = R[2, 0] = R[2, 1] = 0.9
copula = ot.NormalCopula(R)
distribution = otexp.PointConditionalDistribution(copula, [1], [0.8])
print("Distribution ", repr(distribution))
print("Distribution ", distribution)
# Get mean and covariance
print("Mean= ", repr(distribution.getMean()))
print("Covariance= ", repr(distribution.getCovariance()))
# Is this distribution elliptical ?
print("Elliptical = ", distribution.isElliptical())
# Test for realization of distribution
oneRealization = distribution.getRealization()
print("oneRealization=", repr(oneRealization))
print("dim=", distribution.getDimension())
print("range=", distribution.getRange())
print("mean=", distribution.getMean())
print("cov=", distribution.getCovariance())
print("marginal=", distribution.getMarginal([1]))
ot.Log.Show(ot.Log.TRACE)
validation = ott.DistributionValidation(distribution)
validation.skipMoments() # slow
validation.skipCorrelation() # slow
validation.skipGradient() # slow
validation.setCDFSamplingSize(1)
validation.run()
# no conditioning
distribution = otexp.PointConditionalDistribution(copula, [], [])
simplified = distribution.getSimplifiedVersion()
print(distribution.getSimplifiedVersion())
ott.assert_almost_equal(simplified, copula)
# discrete case
discrete = ot.Multinomial(5, [0.25] * 3)
distribution = otexp.PointConditionalDistribution(discrete, [1], [1.0])
print("dim=", distribution.getDimension())
assert distribution.getDimension() == 2, "wrong dimension"
print("range=", distribution.getRange())
print("mean=", distribution.getMean())
print("cov=", distribution.getCovariance())
print("marginal=", distribution.getMarginal([1]))
print("support=", distribution.getSupport())
assert distribution.isDiscrete(), "wrong isDiscrete"
ott.assert_almost_equal(distribution.getMean(), [4 / 3] * 2)
validation = ott.DistributionValidation(distribution)
validation.skipMoments() # slow
validation.skipCorrelation() # slow
validation.skipGradient() # slow
validation.skipParameters() # integer parameter
validation.setCDFSamplingSize(1)
validation.run()
# special case for Normal
normal = ot.Normal([0.0] * 3, R)
distribution = otexp.PointConditionalDistribution(normal, [1], [2.0])
simplified = distribution.getSimplifiedVersion()
print(simplified)
simplified_ref = ot.Normal([1.8] * 2, [0.43589] * 2, ot.CorrelationMatrix([[1.0, 0.473684], [0.473684, 1.0]]))
ott.assert_almost_equal(simplified, simplified_ref)
# ensure services are ok
mean_ref = simplified_ref.getMean()
ott.assert_almost_equal(distribution.getMean(), mean_ref)
ott.assert_almost_equal(distribution.getStandardDeviation(), simplified_ref.getStandardDeviation())
ott.assert_almost_equal(distribution.computePDF(mean_ref), simplified_ref.computePDF(mean_ref))
ott.assert_almost_equal(distribution.computeCDF(mean_ref), simplified_ref.computeCDF(mean_ref))
# special case for Student
student = ot.Student(2.5, [0.4] * 3, [1.2] * 3, R)
distribution = otexp.PointConditionalDistribution(student, [1], [2.0])
simplified = distribution.getSimplifiedVersion()
print(simplified)
ott.assert_almost_equal(simplified.getMarginal(0), ot.Student(3.5, 1.84, 1.07564))
ott.assert_almost_equal(distribution.computePDF(distribution.getMean()), 0.156194)
# special case for JointDistribution
R = ot.CorrelationMatrix(3)
R[1, 0] = R[2, 0] = R[2, 1] = 0.9
copula = ot.NormalCopula(R)
joint = ot.JointDistribution([ot.Exponential(1.0, -2.0)] * R.getDimension(), copula)
distribution = otexp.PointConditionalDistribution(joint, [1], [0.8])
simplified = distribution.getSimplifiedVersion()
print(simplified)
assert simplified.getName() == "JointDistribution", "wrong type"
ott.assert_almost_equal(distribution.computePDF(distribution.getMean()), 0.266138)
# special case for Mixture
mixture = ot.Mixture([ot.Normal(2), ot.Normal(2)], [0.3, 0.7])
distribution = otexp.PointConditionalDistribution(mixture, [1], [2.0])
simplified = distribution.getSimplifiedVersion()
print(simplified)
assert simplified.getName() == "Mixture", "wrong type"
ott.assert_almost_equal(distribution.computePDF(distribution.getMean()), 0.398942)
# special case for KernelMixture
kernel = ot.Uniform()
sample = ot.Normal(2).getSample(5)
bandwidth = [1.0] * 2
kernelMixture = ot.KernelMixture(kernel, bandwidth, sample)
distribution = otexp.PointConditionalDistribution(kernelMixture, [1], [1.0])
simplified = distribution.getSimplifiedVersion()
print(simplified)
assert simplified.getName() == "Mixture", "wrong type"
ott.assert_almost_equal(distribution.computePDF([0]), 0.25)
# ratio of uniform method initialization is harder for Dirichlet
R = ot.CorrelationMatrix(3, [1.0, 0.5, 0.1, 0.5, 1.0, 0.2, 0.1, 0.2, 1.0])
core = ot.Dirichlet([1, 2, 3, 4])
joint = ot.JointDistribution([ot.Exponential()] * 3, core)
distribution = otexp.PointConditionalDistribution(joint, [1], [2.0])
sample = distribution.getSample(10)
# special case for EmpiricalBernsteinCopula
sample = normal.getSample(10)
bernstein = ot.EmpiricalBernsteinCopula(sample, 5)
distribution = otexp.PointConditionalDistribution(bernstein, [1], [0.5])
simplified = distribution.getSimplifiedVersion()
print(simplified)
assert simplified.getName() == "Mixture", "wrong type"
# special case for BlockIndependentDistribution
blockIndep = ot.BlockIndependentDistribution([normal, student, mixture])
# test a conditioning which remove the first block, modify the second block and let the last block unchanged
distribution = otexp.PointConditionalDistribution(blockIndep, [1, 3, 0, 2], [0.5, 0.5, 0.5, 0.5])
simplified = distribution.getSimplifiedVersion()
print(simplified)
assert simplified.getName() == "BlockIndependentDistribution", "wrong type"
ott.assert_almost_equal(distribution.computePDF(distribution.getMean()), 0.0248766)
# test a conditioning which remove all but the last block
# As the last block can be simplified, it is its actual simplification which is used
distribution = otexp.PointConditionalDistribution(blockIndep, [0, 1, 2, 3, 4, 5, 6], [0.5] * 7)
simplified = distribution.getSimplifiedVersion()
print(simplified)
assert simplified.getName() == "Mixture", "wrong type"
ott.assert_almost_equal(distribution.computePDF(distribution.getMean()), 0.398942)
# special case for BlockIndependentCopula
R = ot.CorrelationMatrix(3)
R[1, 0] = R[2, 0] = R[2, 1] = 0.9
blockIndep = ot.BlockIndependentCopula([ot.GumbelCopula(), ot.NormalCopula(R)])
# test a conditioning which remove the first block, modify the second block and let the last block unchanged
distribution = otexp.PointConditionalDistribution(blockIndep, [1, 3], [0.4, 0.5])
simplified = distribution.getSimplifiedVersion()
print(simplified)
assert simplified.getName() == "BlockIndependentDistribution", "wrong type"
ott.assert_almost_equal(distribution.computePDF(distribution.getMean()), 9.01202)
# negative bound sampling case
ot.ResourceMap.SetAsBool("PointConditionalDistribution-UseSimplifiedVersion", False)
distribution = otexp.PointConditionalDistribution(copula - 1.0, [1], [-0.8])
ott.assert_almost_equal(distribution.getSample(1000).computeMean(), [-0.75] * 2, 1e-2, 1e-2)
|