1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
|
#! /usr/bin/env python
import openturns as ot
ot.TESTPREAMBLE()
# size of timeGrid
size = 6
dimension = 1
sample = ot.Sample(size, dimension)
for i in range(size):
for j in range(dimension):
sample[i, j] = i + j + 1
# TimeGrid
timeGrid = ot.RegularGrid(0.0, 1.0 / (size - 1), size)
# TimeSeries
timeSeries = ot.TimeSeries(timeGrid, sample)
# We create an empty ProcessSample with default constructor
psample0 = ot.ProcessSample()
psample0.setName("PSample0")
print("Default constructor")
print("psample0=", psample0)
# We create an empty ProcessSample with timeGrid, size and dimension
# arguments
psample1 = ot.ProcessSample(timeGrid, 4, dimension)
psample1.setName("PSample1")
print("Constructor based on size, dimension and timeGrid")
print("psample1=", psample1)
# change the first component using operator []
psample1[0] = timeSeries
print("changing psample1[0] with []")
print("psample1[0]=", (psample1[0]))
# We create a ProcessSample with size and timeSeries arguments
psample2 = ot.ProcessSample(3, timeSeries)
psample2.setName("PSample2")
print("Constructor based on size / timeSeries")
print("psample2=", psample2)
psample3 = ot.ProcessSample(8, timeSeries)
psample3.erase(2)
assert psample3.getSize() == 7, "wrong size"
psample3.erase(2, 5)
assert psample3.getSize() == 4, "wrong size"
psample3.clear()
assert psample3.getSize() == 0, "wrong size"
# TimeSeriesCollection
# collection = TimeSeriesCollection()
# collection.add(timeSeries)
# sample *= [0.1]
# newtimeSeries = TimeSeries(timeGrid, sample)
# collection.add(newtimeSeries)
# We create a ProcessSample with collection arguments arguments
# psample3 = ProcessSample(collection)
# psample3.setName("PSample3")
# print "Constructor based on collection "
# print "psample3=", psample3
# ts = psample3[1]
# print "last element of psample3=", (ts)
# print "psample3 mean=", psample3.computeMean()
# print "psample3 temporal mean=", psample3.computeTemporalMean()
# A process with 1D domain dimension and 2D output dimension
numberOfIntervals = 20
interval = ot.Interval(-1.0, 1.0)
mesh = ot.IntervalMesher([numberOfIntervals - 1]).build(interval)
outputDimension = 2
sampleSize = 250
processSample = ot.ProcessSample(mesh, sampleSize, outputDimension)
# processSample.setDescription(['Twater', 'Tair'])
R = ot.CorrelationMatrix(outputDimension)
R[0, 1] = 0.75
distribution = ot.Normal([15, 20], [5, 10], R)
for i in range(sampleSize):
processSample[i] = distribution.getSample(mesh.getVerticesNumber())
mean = processSample.computeMean()
stddev = processSample.computeStandardDeviation()
sample_node4 = processSample.getSampleAtVertex(4)
assert len(sample_node4) == len(processSample), "wrong len"
print("mean=", mean.getValues())
print("sttdev=", stddev.getValues())
graph1 = processSample.draw()
graph2 = processSample.drawMarginalCorrelation(0, 1)
graph3 = processSample.drawCorrelation()
# center
processSample -= processSample.computeMean().getValues()
if 0:
from openturns.viewer import View
View(graph1).save("graph1.png")
View(graph2).save("graph2.png")
View(graph3).save("graph3.png")
# ctor from collection of Samples
coll = [
ot.Normal(outputDimension).getSample(mesh.getVerticesNumber())
for i in range(sampleSize)
]
processSample2 = ot.ProcessSample(mesh, coll)
assert len(processSample2) == sampleSize, "wrong size"
# More statistical methods
# processSample = ot.GaussianProcess(ot.MaternModel([10.0], [0.1], 1.5), ot.RegularGrid(0.0, 0.1, 1000)).getSample(10000)
print("min=", processSample.getMin().getValues())
print("max=", processSample.getMax().getValues())
print("range=", processSample.computeRange().getValues())
print("variance=", processSample.computeVariance().getValues())
print("skewness=", processSample.computeSkewness().getValues())
print("kurtosis=", processSample.computeKurtosis().getValues())
print("centered moment (3)=", processSample.computeCentralMoment(3).getValues())
print("raw moment (3)=", processSample.computeRawMoment(3).getValues())
x = [0.2] * processSample.getDimension()
print("median=", processSample.computeMedian().getValues())
q = 0.3
print(
"quantile at level",
q,
"=",
processSample.computeQuantilePerComponent(q).getValues(),
)
print("empirical CDF at", x, "=", processSample.computeEmpiricalCDF(x).getValues())
print(
"complementary empirical CDF at",
x,
"=",
processSample.computeEmpiricalCDF(x, True).getValues(),
)
n = mesh.getVerticesNumber()
try:
s = processSample.getSampleAtVertex(n)
assert False, "should not go there"
except Exception:
pass
|