1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
|
#! /usr/bin/env python
import openturns as ot
import openturns.testing as ott
ot.TESTPREAMBLE()
def test_active_parameter():
# Define product of matern 1d
cov_model_1d = ot.MaternModel([0.5], 2.5)
print("1D Full parameter : ", cov_model_1d.getFullParameter())
print(
"1D active cov. param.: ",
[
cov_model_1d.getFullParameterDescription()[i]
for i in cov_model_1d.getActiveParameter()
],
)
print("Activate nu parameter")
cov_model_1d.setActiveParameter([0, 2, 3])
print(
"active cov. param.: ",
[
cov_model_1d.getFullParameterDescription()[i]
for i in cov_model_1d.getActiveParameter()
],
)
print("Matern d-dimensional covariance as product")
d = 3
cov_model = ot.ProductCovarianceModel([cov_model_1d] * d)
marginal0 = cov_model.getMarginal(0)
assert marginal0.getInputDimension() == d, "wrong marginal input dim"
assert marginal0.getOutputDimension() == 1, "wrong marginal output dim"
print("Full parameter : ", cov_model.getFullParameter())
print(
"active cov. param.: ",
[
cov_model.getFullParameterDescription()[i]
for i in cov_model.getActiveParameter()
],
)
print("Disable nu for marginals 0 & 1 parameter : ", cov_model.getFullParameter())
cov_model.setActiveParameter([0, 1, 2, 4, 7])
print(
"active cov. param.: ",
[
cov_model.getFullParameterDescription()[i]
for i in cov_model.getActiveParameter()
],
)
print("Check that active parameter is correctly propagated")
for k in range(3):
print(
"Model ",
k,
" : active cov. param.: ",
[
cov_model.getCollection()[k].getFullParameterDescription()[i]
for i in cov_model.getCollection()[k].getActiveParameter()
],
)
def test_active_amplitude_parameter():
# Define product of matern 1d
model1 = ot.MaternModel([1.0], 2.5)
print("Model 1 : ", model1.getFullParameterDescription())
print("Activate nu parameter and disable sigma2")
model1.setActiveParameter([0, 1, 3])
print(
"model1 active parameter: ",
[model1.getFullParameterDescription()[i] for i in model1.getActiveParameter()],
)
model2 = ot.ExponentiallyDampedCosineModel()
print("Model 2 : ", model2.getFullParameterDescription())
print("Activate freq parameter")
model2.setActiveParameter([0, 2, 3])
print(
"model2 active parameter: ",
[model2.getFullParameterDescription()[i] for i in model2.getActiveParameter()],
)
print("Activate nuggetFactor parameter")
model2.setActiveParameter([0, 1, 2, 3])
print(
"model2 active parameter: ",
[model2.getFullParameterDescription()[i] for i in model2.getActiveParameter()],
)
print("Product covariance model")
cov_model = ot.ProductCovarianceModel([model1, model2])
print("Full parameter : ", cov_model.getFullParameter())
print(
"active cov. param.: ",
[
cov_model.getFullParameterDescription()[i]
for i in cov_model.getActiveParameter()
],
)
def test_parameters_iso():
scale = []
nuggetFactor = 1e-12
amplitude = 1.0
extraParameter = []
# model 1
atom_ex = ot.IsotropicCovarianceModel(ot.MaternModel(), 2)
atom_ex.setScale([5])
atom_ex.setAmplitude([1.5])
scale.append(5)
amplitude *= 1.5
extraParameter.append(atom_ex.getKernel().getFullParameter()[-1])
# model2
m = ot.MaternModel()
m.setNu(2.5)
m.setScale([3])
m.setAmplitude([3])
scale.append(3)
amplitude *= 3
extraParameter.append(m.getNu())
# model 3
atom = ot.IsotropicCovarianceModel(ot.AbsoluteExponential(), 2)
atom.setScale([2])
atom.setAmplitude([2.5])
scale.append(2)
amplitude *= 2.5
model = ot.ProductCovarianceModel([atom_ex, m, atom])
ott.assert_almost_equal(model.getScale(), scale, 1e-16, 1e-16)
ott.assert_almost_equal(model.getAmplitude(), [amplitude], 1e-16, 1e-16)
ott.assert_almost_equal(
model.getFullParameter(),
scale + [nuggetFactor, amplitude] + extraParameter,
1e-16,
1e-16,
)
# active parameter should be scale + amplitude
ott.assert_almost_equal(model.getActiveParameter(), [0, 1, 2, 4], 1e-16, 1e-16)
# setting new parameters
extraParameter = [2.5, 0.5]
model.setFullParameter([6, 7, 8, 0.01, 2] + extraParameter)
ott.assert_almost_equal(model.getCollection()[0].getScale()[0], 6, 1e-16, 1e-16)
ott.assert_almost_equal(model.getCollection()[1].getScale()[0], 7, 1e-16, 1e-16)
ott.assert_almost_equal(model.getCollection()[2].getScale()[0], 8, 1e-16, 1e-16)
ott.assert_almost_equal(model.getNuggetFactor(), 0.01, 0.0, 0.0)
ott.assert_almost_equal(model.getAmplitude()[0], 2, 1e-16, 1e-16)
ott.assert_almost_equal(
model.getCollection()[0].getFullParameter()[-1], extraParameter[0], 1e-16, 1e-16
)
ott.assert_almost_equal(
model.getCollection()[1].getFullParameter()[-1], extraParameter[1], 1e-16, 1e-16
)
# checking active par setting
model.setActiveParameter([0, 1, 2, 4, 6])
ott.assert_almost_equal(
model.getParameter(), [6, 7, 8, 2, extraParameter[-1]], 1e-16, 1e-16
)
test_active_parameter()
test_active_amplitude_parameter()
test_parameters_iso()
|