File: t_ProductCovarianceModel_std.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (174 lines) | stat: -rwxr-xr-x 5,540 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
#! /usr/bin/env python

import openturns as ot
import openturns.testing as ott

ot.TESTPREAMBLE()


def test_active_parameter():
    # Define product of matern 1d
    cov_model_1d = ot.MaternModel([0.5], 2.5)
    print("1D Full parameter : ", cov_model_1d.getFullParameter())
    print(
        "1D active cov. param.: ",
        [
            cov_model_1d.getFullParameterDescription()[i]
            for i in cov_model_1d.getActiveParameter()
        ],
    )
    print("Activate nu parameter")
    cov_model_1d.setActiveParameter([0, 2, 3])
    print(
        "active cov. param.: ",
        [
            cov_model_1d.getFullParameterDescription()[i]
            for i in cov_model_1d.getActiveParameter()
        ],
    )

    print("Matern d-dimensional covariance as product")
    d = 3
    cov_model = ot.ProductCovarianceModel([cov_model_1d] * d)
    marginal0 = cov_model.getMarginal(0)
    assert marginal0.getInputDimension() == d, "wrong marginal input dim"
    assert marginal0.getOutputDimension() == 1, "wrong marginal output dim"
    print("Full parameter : ", cov_model.getFullParameter())
    print(
        "active cov. param.: ",
        [
            cov_model.getFullParameterDescription()[i]
            for i in cov_model.getActiveParameter()
        ],
    )
    print("Disable nu for marginals 0 & 1 parameter : ", cov_model.getFullParameter())
    cov_model.setActiveParameter([0, 1, 2, 4, 7])
    print(
        "active cov. param.: ",
        [
            cov_model.getFullParameterDescription()[i]
            for i in cov_model.getActiveParameter()
        ],
    )
    print("Check that active parameter is correctly propagated")

    for k in range(3):
        print(
            "Model ",
            k,
            " : active cov. param.: ",
            [
                cov_model.getCollection()[k].getFullParameterDescription()[i]
                for i in cov_model.getCollection()[k].getActiveParameter()
            ],
        )


def test_active_amplitude_parameter():
    # Define product of matern 1d
    model1 = ot.MaternModel([1.0], 2.5)
    print("Model 1 : ", model1.getFullParameterDescription())
    print("Activate nu parameter and disable sigma2")
    model1.setActiveParameter([0, 1, 3])
    print(
        "model1 active parameter: ",
        [model1.getFullParameterDescription()[i] for i in model1.getActiveParameter()],
    )

    model2 = ot.ExponentiallyDampedCosineModel()
    print("Model 2 : ", model2.getFullParameterDescription())
    print("Activate freq parameter")
    model2.setActiveParameter([0, 2, 3])
    print(
        "model2 active parameter: ",
        [model2.getFullParameterDescription()[i] for i in model2.getActiveParameter()],
    )
    print("Activate nuggetFactor parameter")
    model2.setActiveParameter([0, 1, 2, 3])
    print(
        "model2 active parameter: ",
        [model2.getFullParameterDescription()[i] for i in model2.getActiveParameter()],
    )

    print("Product covariance model")
    cov_model = ot.ProductCovarianceModel([model1, model2])
    print("Full parameter : ", cov_model.getFullParameter())
    print(
        "active cov. param.: ",
        [
            cov_model.getFullParameterDescription()[i]
            for i in cov_model.getActiveParameter()
        ],
    )


def test_parameters_iso():
    scale = []
    nuggetFactor = 1e-12
    amplitude = 1.0
    extraParameter = []

    # model 1
    atom_ex = ot.IsotropicCovarianceModel(ot.MaternModel(), 2)
    atom_ex.setScale([5])
    atom_ex.setAmplitude([1.5])
    scale.append(5)
    amplitude *= 1.5
    extraParameter.append(atom_ex.getKernel().getFullParameter()[-1])

    # model2
    m = ot.MaternModel()
    m.setNu(2.5)
    m.setScale([3])
    m.setAmplitude([3])
    scale.append(3)
    amplitude *= 3
    extraParameter.append(m.getNu())

    # model 3
    atom = ot.IsotropicCovarianceModel(ot.AbsoluteExponential(), 2)
    atom.setScale([2])
    atom.setAmplitude([2.5])
    scale.append(2)
    amplitude *= 2.5

    model = ot.ProductCovarianceModel([atom_ex, m, atom])

    ott.assert_almost_equal(model.getScale(), scale, 1e-16, 1e-16)
    ott.assert_almost_equal(model.getAmplitude(), [amplitude], 1e-16, 1e-16)
    ott.assert_almost_equal(
        model.getFullParameter(),
        scale + [nuggetFactor, amplitude] + extraParameter,
        1e-16,
        1e-16,
    )

    # active parameter should be scale + amplitude
    ott.assert_almost_equal(model.getActiveParameter(), [0, 1, 2, 4], 1e-16, 1e-16)

    # setting new parameters
    extraParameter = [2.5, 0.5]
    model.setFullParameter([6, 7, 8, 0.01, 2] + extraParameter)

    ott.assert_almost_equal(model.getCollection()[0].getScale()[0], 6, 1e-16, 1e-16)
    ott.assert_almost_equal(model.getCollection()[1].getScale()[0], 7, 1e-16, 1e-16)
    ott.assert_almost_equal(model.getCollection()[2].getScale()[0], 8, 1e-16, 1e-16)
    ott.assert_almost_equal(model.getNuggetFactor(), 0.01, 0.0, 0.0)
    ott.assert_almost_equal(model.getAmplitude()[0], 2, 1e-16, 1e-16)
    ott.assert_almost_equal(
        model.getCollection()[0].getFullParameter()[-1], extraParameter[0], 1e-16, 1e-16
    )
    ott.assert_almost_equal(
        model.getCollection()[1].getFullParameter()[-1], extraParameter[1], 1e-16, 1e-16
    )

    # checking active par setting
    model.setActiveParameter([0, 1, 2, 4, 6])
    ott.assert_almost_equal(
        model.getParameter(), [6, 7, 8, 2, extraParameter[-1]], 1e-16, 1e-16
    )


test_active_parameter()
test_active_amplitude_parameter()
test_parameters_iso()