File: t_ProductDistribution_std.expout

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (29 lines) | stat: -rw-r--r-- 1,045 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
Distribution  ProductDistribution(Uniform(a = -1, b = 2) * Normal(mu = 1, sigma = 2))
Elliptical = False
Continuous = True
oneRealization= [2.28927]
oneSample first= [-0.11143]  last= [2.03647]
mean= [0.48959]
covariance= [[ 4.80714 ]]
Point=  [2.5]
ddf      = [-0.032141]
pdf      =0.0680485
cdf      =0.856594
pdf gradient      = [0.00830329,0.0103036,0.0171714,-0.00243373]
cdf gradient      = [-0.034449,-0.102285,-0.0746378,-0.0477418]
quantile     = [4.65046]
cdf(quantile)=0.95
entropy=2.04312
entropy (MC)=2.04103
mean      = [0.5]
standard deviation      = [2.17945]
skewness      = [0.869365]
kurtosis      = [6.00166]
covariance      = [[ 4.75 ]]
parameters      = [[a : -1, b : 2, mu_0 : 1, sigma_0 : 2]]
Standard representative= ProductDistribution(Uniform(a = -1, b = 2) * Normal(mu = 1, sigma = 2))
left= Uniform(a = -1, b = 2)
right= Normal(mu = 1, sigma = 2)
distribution= ProductDistribution(ProductDistribution(Uniform(a = -1, b = 1) * Uniform(a = -1, b = 1)) * Uniform(a = -1, b = 1))
mean= [0]
standard deviation= [0.19245]