1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
|
#! /usr/bin/env python
import openturns as ot
ot.TESTPREAMBLE()
left = ot.Uniform(-1.0, 2.0)
right = ot.Normal(1.0, 2.0)
distribution = ot.ProductDistribution(left, right)
print("Distribution ", distribution)
# Is this distribution elliptical ?
print("Elliptical =", distribution.isElliptical())
# Is this distribution continuous ?
print("Continuous =", distribution.isContinuous())
# Test for realization of distribution
oneRealization = distribution.getRealization()
print("oneRealization=", oneRealization)
# Test for sampling
size = 10000
oneSample = distribution.getSample(size)
print("oneSample first=", oneSample[0], " last=", oneSample[size - 1])
print("mean=", oneSample.computeMean())
print("covariance=", oneSample.computeCovariance())
# Define a point
point = [2.5] * distribution.getDimension()
print("Point= ", point)
# Show PDF and CDF of point
DDF = distribution.computeDDF(point)
print("ddf =", DDF)
PDF = distribution.computePDF(point)
print("pdf =%.6g" % PDF)
CDF = distribution.computeCDF(point)
print("cdf =%.6g" % CDF)
PDFgr = distribution.computePDFGradient(point)
print("pdf gradient =", PDFgr)
CDFgr = distribution.computeCDFGradient(point)
print("cdf gradient =", CDFgr)
quantile = distribution.computeQuantile(0.95)
print("quantile =", quantile)
print("cdf(quantile)=%.6g" % distribution.computeCDF(quantile))
print("entropy=%.6g" % distribution.computeEntropy())
print(
"entropy (MC)=%.6g"
% -distribution.computeLogPDF(distribution.getSample(10000)).computeMean()[0]
)
mean = distribution.getMean()
print("mean =", mean)
standardDeviation = distribution.getStandardDeviation()
print("standard deviation =", standardDeviation)
skewness = distribution.getSkewness()
print("skewness =", skewness)
kurtosis = distribution.getKurtosis()
print("kurtosis =", kurtosis)
covariance = distribution.getCovariance()
print("covariance =", covariance)
parameters = distribution.getParametersCollection()
print("parameters =", parameters)
print("Standard representative=", distribution.getStandardRepresentative())
# Specific to this distribution
print("left=", distribution.getLeft())
print("right=", distribution.getRight())
# For ticket 957
distribution = ot.Uniform() * ot.Uniform() * ot.Uniform()
print("distribution=", distribution)
print("mean=", distribution.getMean())
print("standard deviation=", distribution.getStandardDeviation())
|