File: t_RandomMixture_grid1d.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (43 lines) | stat: -rwxr-xr-x 1,303 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
#! /usr/bin/env python

import openturns as ot

ot.TESTPREAMBLE()
ot.PlatformInfo.SetNumericalPrecision(6)
ot.ResourceMap.SetAsUnsignedInteger("RandomMixture-DefaultMaxSize", 4000000)

# Defining RandomMixture
weights = ot.Point(0)
coll = ot.DistributionCollection(0)
coll.add(ot.Gamma(0.5, 1.0))
weights.add(1.0)
coll.add(ot.Gamma(0.5, 1.0))
weights.add(1.0)
coll.add(ot.Gamma(0.5, 1.0))
weights.add(1.0)
coll.add(ot.Gamma(0.5, 1.0))
weights.add(1.0)
coll.add(ot.Gamma(1.0, 1.0))
weights.add(1.0)
distribution = ot.RandomMixture(coll, weights)
referenceDistribution = ot.Gamma(3.0, 1.0)
# Compute PDF on regular grid
N = 256
points = ot.Indices(1, N)
mean = distribution.getMean()
sigma = distribution.getStandardDeviation()
xMin = mean - 3.9 * sigma
xMax = mean + 3.9 * sigma
grid = ot.Sample()
print("distribution = ", repr(distribution))
print("range = ", distribution.getRange())
print("mean = ", distribution.getMean())
print("cov = ", distribution.getCovariance())
print("sigma = ", distribution.getStandardDeviation())
print("xMin = ", xMin)
print("xMax = ", xMax)
result, grid = distribution.computePDF(xMin, xMax, points)
print("x;PDF;reference")
for i in range(grid.getSize()):
    ref = referenceDistribution.computePDF(grid[i])
    print("%.6g;%.6g;%.6g" % (grid[i][0], result[i][0], ref))