1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
|
#! /usr/bin/env python
import openturns as ot
ot.TESTPREAMBLE()
ot.PlatformInfo.SetNumericalPrecision(6)
ot.ResourceMap.SetAsUnsignedInteger("RandomMixture-DefaultMaxSize", 4000000)
# Defining RandomMixture
weights = ot.Point(0)
coll = ot.DistributionCollection(0)
coll.add(ot.Gamma(0.5, 1.0))
weights.add(1.0)
coll.add(ot.Gamma(0.5, 1.0))
weights.add(1.0)
coll.add(ot.Gamma(0.5, 1.0))
weights.add(1.0)
coll.add(ot.Gamma(0.5, 1.0))
weights.add(1.0)
coll.add(ot.Gamma(1.0, 1.0))
weights.add(1.0)
distribution = ot.RandomMixture(coll, weights)
referenceDistribution = ot.Gamma(3.0, 1.0)
# Compute PDF on regular grid
N = 256
points = ot.Indices(1, N)
mean = distribution.getMean()
sigma = distribution.getStandardDeviation()
xMin = mean - 3.9 * sigma
xMax = mean + 3.9 * sigma
grid = ot.Sample()
print("distribution = ", repr(distribution))
print("range = ", distribution.getRange())
print("mean = ", distribution.getMean())
print("cov = ", distribution.getCovariance())
print("sigma = ", distribution.getStandardDeviation())
print("xMin = ", xMin)
print("xMax = ", xMax)
result, grid = distribution.computePDF(xMin, xMax, points)
print("x;PDF;reference")
for i in range(grid.getSize()):
ref = referenceDistribution.computePDF(grid[i])
print("%.6g;%.6g;%.6g" % (grid[i][0], result[i][0], ref))
|