File: t_RandomVector_conditional.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (42 lines) | stat: -rwxr-xr-x 1,316 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#! /usr/bin/env python

import openturns as ot

# We create a distribution
distribution = ot.Normal()

print("distribution = ", repr(distribution))

aCollection = []
aCollection.append(ot.Normal(0.0, 1.0))
aCollection.append(ot.Uniform(1.0, 1.5))
distributionParameters = ot.JointDistribution(aCollection)
randomParameters = ot.RandomVector(distributionParameters)

print("random parameters=", randomParameters)

# We create a distribution-based conditional RandomVector
vect = ot.ConditionalRandomVector(distribution, randomParameters)
print("vect=", vect)

# Check standard methods of class RandomVector
print("vect dimension=", vect.getDimension())
p = ot.Point()
r = vect.getRealization(p)
print("vect realization=", repr(r))
print("parameters value=", repr(p))
distribution.setParameter(p)
ot.RandomGenerator.SetSeed(0)
# Generate a parameter set to put the random generator into the proper
# state
randomParameters.getRealization()
# The realization of the distribution should be equal to the realization
# of the conditional vector
print("dist realization=", repr(distribution.getRealization()))

print("vect sample =", repr(vect.getSample(5)))

parameter = vect.getParameter()
print("parameter =", repr(parameter))
vect.setParameter(parameter)
print("parameter desc =", repr(vect.getParameterDescription()))