File: t_RandomVector_distribution.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (32 lines) | stat: -rwxr-xr-x 944 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
#! /usr/bin/env python

import openturns as ot

ot.TESTPREAMBLE()

# We create a distribution
meanPoint = ot.Point(1)
meanPoint[0] = 1.0
sigma = ot.Point(1)
sigma[0] = 1.0
R = ot.CorrelationMatrix(1)
distribution = ot.Normal(meanPoint, sigma, R)

ref_distribution = distribution

print("distribution = ", repr(ref_distribution))

# We create a distribution-based RandomVector
vect = ot.RandomVector(distribution)
print("vect=", vect)

# Check standard methods of class RandomVector
print("vect dimension=", vect.getDimension())
print("vect realization (first )=", repr(vect.getRealization()))
print("vect realization (second)=", repr(vect.getRealization()))
print("vect realization (third )=", repr(vect.getRealization()))
print("vect sample =", repr(vect.getSample(5)))
parameter = vect.getParameter()
print("vect parameter =", repr(parameter))
vect.setParameter(parameter)
print("vect parameter desc =", repr(vect.getParameterDescription()))