1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
|
#! /usr/bin/env python
import openturns as ot
ot.TESTPREAMBLE()
class RVEC(ot.PythonRandomVector):
def __init__(self):
super(RVEC, self).__init__(2)
self.setDescription(["R", "S"])
self._offset = 2.0
def getRealization(self):
X = [
ot.RandomGenerator.Generate(),
self._offset + ot.RandomGenerator.Generate(),
]
return X
def getSample(self, size):
X = []
for i in range(size):
X.append(
[
ot.RandomGenerator.Generate(),
self._offset + ot.RandomGenerator.Generate(),
]
)
return X
def getMean(self):
return [0.5, self._offset + 0.5]
def getCovariance(self):
return [[0.0833333, 0.0], [0.0, 0.0833333]]
def isEvent(self):
return False
def setParameter(self, offset_point):
self._offset = offset_point[0]
def getParameter(self):
return [self._offset]
def getParameterDescription(self):
return ["offset"]
R = RVEC()
print(R)
# Instance creation
myRV = ot.RandomVector(R)
print("myRV=", repr(myRV))
# Copy constructor
newRV = ot.RandomVector(myRV)
# Dimension
dim = myRV.getDimension()
print("dimension=", dim)
# Realization
X = myRV.getRealization()
print("realization=", X)
# Sample
X = myRV.getSample(5)
print("sample=", X)
# Mean
mean = myRV.getMean()
print("mean=", mean)
# Covariance
covariance = myRV.getCovariance()
print("covariance=", covariance)
isEvent = myRV.isEvent()
print("isEvent=", isEvent)
# Parameter description
print("description=", myRV.getParameterDescription())
# Parameter
myRV.setParameter([10.5])
print("new parameter=", myRV.getParameter())
print("new mean=", myRV.getMean())
print("new realization=", myRV.getRealization())
print("new sample=", myRV.getSample(5))
|