1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
|
#! /usr/bin/env python
import openturns as ot
import openturns.testing as ott
from math import exp, inf
ot.TESTPREAMBLE()
ot.RandomGenerator.SetSeed(0)
mu = 5000.0
prior = ot.Normal(mu, 1.0)
initialState = [0.0]
instrumental = ot.Normal(0.0, 1.0)
sampler = ot.RandomWalkMetropolisHastings(prior, initialState, instrumental)
sampler.setBurnIn(1000)
s1 = sampler.getSample(2000)
ott.assert_almost_equal(s1[sampler.getBurnIn() :].computeMean()[0], mu, 1e-2, 0.0)
data = ot.Sample(
[
[53, 1],
[57, 1],
[58, 1],
[63, 1],
[66, 0],
[67, 0],
[67, 0],
[67, 0],
[68, 0],
[69, 0],
[70, 0],
[70, 0],
[70, 1],
[70, 1],
[72, 0],
[73, 0],
[75, 0],
[75, 1],
[76, 0],
[76, 0],
[78, 0],
[79, 0],
[81, 0],
]
)
data.setDescription(["Temp. (°F)", "Failure"])
print(data)
fun = ot.SymbolicFunction(
["alpha", "beta", "x"], ["exp(alpha + beta * x) / (1 + exp(alpha + beta * x))"]
)
linkFunction = ot.ParametricFunction(fun, [2], [0.0])
instrumental = ot.Normal([0.0] * 2, [0.5, 0.05], ot.IdentityMatrix(2))
target = ot.JointDistribution([ot.Uniform(-100.0, 100.0)] * 2)
rwmh = ot.RandomWalkMetropolisHastings(target, [0.0] * 2, instrumental)
rwmh.setBurnIn(10000)
conditional = ot.Bernoulli()
observations = data[:, 1]
covariates = data[:, 0]
rwmh.setLikelihood(conditional, observations, linkFunction, covariates)
# try to generate a sample
sample = rwmh.getSample(100000)
mu = sample[rwmh.getBurnIn() :].computeMean()
sigma = sample[rwmh.getBurnIn() :].computeStandardDeviation()
print("mu=", mu, "sigma=", sigma)
# Put the posterior density in a PythonFunction
def post_den(alpha_beta):
return [exp(rwmh.computeLogPosterior(alpha_beta))]
posterior_density = ot.PythonFunction(2, 1, post_den)
# approximate the posterior distribution
# NB: to get a good view of the mode of the posterior distribution, use:
# posterior_density.draw([14.0, -0.25], [16.0, -0.22], [100, 100])
mesher = ot.IntervalMesher([100, 100])
lowerBound = [-2.5, -0.53]
upperBound = [34.0, 0.03]
box = ot.Interval(lowerBound, upperBound)
vertices = mesher.build(box).getVertices()
densities = posterior_density(vertices).asPoint()
approximate_posterior = ot.UserDefined(vertices, densities)
approximate_mean = approximate_posterior.getMean()
approximate_std = approximate_posterior.getStandardDeviation()
ott.assert_almost_equal(mu, approximate_mean, 0.2, 0.0)
ott.assert_almost_equal(sigma, approximate_std, 0.2, 0.0)
print("acceptance rate=", rwmh.getAcceptanceRate())
ott.assert_almost_equal(
rwmh.getAcceptanceRate(), 0.28, 0.1, 0.0
) # Empirical acceptance rate observed when executing the code
# from 1532
fullModel = ot.SymbolicFunction(["x", "theta"], ["theta", "1.0"])
model = ot.ParametricFunction(fullModel, [0], [1.0])
prior = ot.Normal(0.0, 1.0)
prior.setDescription(["theta"])
instrumental = ot.Normal(0.0, 1.0)
thetaTrue = [2.0]
# We choose the most favorable initial state: the true parameter value.
initialState = thetaTrue
conditional = ot.Normal() # the log-likelihood is Gaussian
# 503 observations: OK
obsSize = 503
ot.RandomGenerator.SetSeed(0)
y_obs = ot.Normal(thetaTrue[0], 1.0).getSample(obsSize)
x_obs = y_obs
RWMHsampler = ot.RandomWalkMetropolisHastings(prior, initialState, instrumental)
RWMHsampler.setLikelihood(conditional, y_obs, model, x_obs)
print(
"Log-likelihood of thetaTrue = {!r}".format(
RWMHsampler.computeLogLikelihood(thetaTrue)
)
)
real_503 = RWMHsampler.getRealization()
print("With 503 observations, getRealization() produces {!r}".format(real_503[0]))
ott.assert_almost_equal(real_503[0], 2.0)
# 504 observations: not OK
obsSize = 504
ot.RandomGenerator.SetSeed(0)
y_obs = ot.Normal(thetaTrue[0], 1.0).getSample(obsSize)
x_obs = y_obs
RWMHsampler = ot.RandomWalkMetropolisHastings(prior, initialState, instrumental)
RWMHsampler.setLikelihood(conditional, y_obs, model, x_obs)
print(
"Log-likelihood of thetaTrue = {!r}".format(
RWMHsampler.computeLogLikelihood(thetaTrue)
)
)
# produces an error with current master branch
real_504 = RWMHsampler.getRealization()
print("With 504 observations, getRealization() produces {!r}".format(real_504[0]))
ott.assert_almost_equal(real_504[0], 2.0)
# this example throws in ot 1.19 as it tries to evaluate the likelihood outside the support of the prior
# see MetropolisHastingsImplementation::computeLogPosterior
obs = ot.TruncatedNormal(0.5, 0.5, 0.0, 10.0).getSample(50)
likelihood = ot.GeneralizedPareto()
prior = ot.JointDistribution([ot.LogUniform(-1.40, 4.0), ot.Normal(), ot.Normal()])
proposals = [
ot.Uniform(
-prior.getMarginal(k).getStandardDeviation()[0],
+prior.getMarginal(k).getStandardDeviation()[0],
)
for k in range(prior.getDimension())
]
initialState = prior.getMean()
mh_coll = [
ot.RandomWalkMetropolisHastings(prior, initialState, proposals[i], [i])
for i in range(2)
]
for mh in mh_coll:
mh.setLikelihood(likelihood, obs)
sampler = ot.Gibbs(mh_coll)
parameters_sample = sampler.getSample(2000)
# Trick RandomWalkMetropolisHastings into being a simple random walk
# with Uniform(-1, 1) step: every "proposal" is automatically accepted.
logdensity = ot.SymbolicFunction("x", "1")
support = ot.Interval([-inf], [inf])
proposal = ot.Uniform(-1.0, 1.0)
rw = ot.RandomWalkMetropolisHastings(logdensity, support, [0.0], proposal)
# The acceptance rate is 1 in this trivial case,
# so every adaptation step will multiply the adaptation factor
# by the expansion factor.
rw.setAdaptationExpansionFactor(2.0)
rw.setAdaptationPeriod(10)
rw.getSample(100)
ott.assert_almost_equal(rw.getAdaptationFactor(), 2.0**10, 0.0, 0.0)
# Check that the adaptation factor is really taken into account.
# We lengthen the adaptation period to get a longer period witout adaptation.
# We then compare the standard deviation of the step lengths with
# their theoretical standard deviation considering the 1024 adaptation factor.
rw.setAdaptationPeriod(100)
constantAdapationFactorSample = rw.getSample(99)
steps = constantAdapationFactorSample[1:] - constantAdapationFactorSample[:-1]
ref_std = ot.Uniform(-(2.0**10), 2.0**10).getStandardDeviation()
ott.assert_almost_equal(steps.computeStandardDeviation(), ref_std, 0.1, 0.0)
# At the next realization, once again the adaptation factor is multiplied by 2.
rw.getRealization()
# We now change the adaptation range
# to an interval with lower bound larger than 1 (the acceptance rate)
# This way, every adaptation step will multiply the adaptation factor
# by the shrink factor.
rw.setAdaptationRange(ot.Interval(1.1, 1.2))
rw.setAdaptationPeriod(10)
rw.setAdaptationShrinkFactor(0.5)
rw.getSample(100)
ott.assert_almost_equal(rw.getAdaptationFactor(), 2.0, 0.0, 0.0)
|