File: t_SORM_std.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (108 lines) | stat: -rwxr-xr-x 3,044 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
#! /usr/bin/env python

import openturns as ot
import math as m


def printPoint(point, digits):
    oss = "["
    eps = m.pow(0.1, digits)
    for i in range(point.getDimension()):
        if i == 0:
            sep = ""
        else:
            sep = ","
        if abs(point[i]) < eps:
            oss += sep + "%.6f" % abs(point[i])
        else:
            oss += sep + "%.6f" % point[i]
        sep = ","
    oss += "]"
    return oss


ot.TESTPREAMBLE()


# We create a numerical math function
myFunction = ot.SymbolicFunction(["E", "F", "L", "I"], ["-F*L^3/(3*E*I)"])

dim = myFunction.getInputDimension()

# We create a normal distribution point of dimension 1
mean = ot.Point(dim, 0.0)
# E
mean[0] = 50.0
# F
mean[1] = 1.0
# L
mean[2] = 10.0
# I
mean[3] = 5.0
sigma = ot.Point(dim, 1.0)
R = ot.IdentityMatrix(dim)
myDistribution = ot.Normal(mean, sigma, R)

# We create a 'usual' RandomVector from the Distribution
vect = ot.RandomVector(myDistribution)

# We create a composite random vector
output = ot.CompositeRandomVector(myFunction, vect)

# We create an Event from this RandomVector
myEvent = ot.ThresholdEvent(output, ot.Less(), -1.5)

# We create a NearestPoint algorithm
myAbdoRackwitz = ot.AbdoRackwitz()
myAbdoRackwitz.setMaximumIterationNumber(100)
myAbdoRackwitz.setMaximumAbsoluteError(1.0e-10)
myAbdoRackwitz.setMaximumRelativeError(1.0e-10)
myAbdoRackwitz.setMaximumResidualError(1.0e-10)
myAbdoRackwitz.setMaximumConstraintError(1.0e-10)
print("myAbdoRackwitz=", myAbdoRackwitz)

# We create a FORM algorithm
# The first parameter is an OptimizationAlgorithm
# The second parameter is an event
# The third parameter is a starting point for the design point research
myAlgo = ot.SORM(myAbdoRackwitz, myEvent, mean)

# Perform the simulation
myAlgo.run()

# Stream out the result
result = myAlgo.getResult()
digits = 5
print("Breitung event probability=%.6f" % result.getEventProbabilityBreitung())
print(
    "Breitung generalized reliability index=%.6f"
    % result.getGeneralisedReliabilityIndexBreitung()
)
print("Hohenbichler event probability=%.6f" % result.getEventProbabilityHohenbichler())
print(
    "Hohenbichler generalized reliability index=%.6f"
    % result.getGeneralisedReliabilityIndexHohenbichler()
)
print("Tvedt event probability=%.6f" % result.getEventProbabilityTvedt())
print(
    "Tvedt generalized reliability index=%.6f"
    % result.getGeneralisedReliabilityIndexTvedt()
)
print("sorted curvatures=", printPoint(result.getSortedCurvatures(), digits))
print(
    "standard space design point=",
    printPoint(result.getStandardSpaceDesignPoint(), digits),
)
print(
    "physical space design point=",
    printPoint(result.getPhysicalSpaceDesignPoint(), digits),
)

# Is the standard point origin in failure space?
print(
    "is standard point origin in failure space? ",
    result.getIsStandardPointOriginInFailureSpace(),
)

print("importance factors=", printPoint(result.getImportanceFactors(), digits))
print("Hasofer reliability index=%.6f" % result.getHasoferReliabilityIndex())