1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
|
#! /usr/bin/env python
import openturns as ot
import openturns.testing as ott
ot.TESTPREAMBLE()
# linear
levelFunction = ot.SymbolicFunction(["x1", "x2", "x3", "x4"], ["x1+2*x2-3*x3+4*x4"])
# Add a finite difference gradient to the function
myGradient = ot.NonCenteredFiniteDifferenceGradient(1e-7, levelFunction.getEvaluation())
print("myGradient = ", repr(myGradient))
# Substitute the gradient
levelFunction.setGradient(ot.NonCenteredFiniteDifferenceGradient(myGradient))
startingPoint = ot.Point(4, 0.0)
algo = ot.SQP(ot.NearestPointProblem(levelFunction, 3.0))
algo.setStartingPoint(startingPoint)
print("algo=", algo)
algo.run()
result = algo.getResult()
print("result=", result)
ott.assert_almost_equal(algo.getResult().getOptimalValue(), [3.0])
# non-linear
levelFunction = ot.SymbolicFunction(
["x1", "x2", "x3", "x4"], ["x1*cos(x1)+2*x2*x3-3*x3+4*x3*x4"]
)
# Add a finite difference gradient to the function,
# needs it
myGradient = ot.NonCenteredFiniteDifferenceGradient(1e-7, levelFunction.getEvaluation())
# Substitute the gradient
levelFunction.setGradient(ot.NonCenteredFiniteDifferenceGradient(myGradient))
startingPoint = ot.Point(4, 0.0)
algo = ot.SQP(ot.NearestPointProblem(levelFunction, -0.5))
algo.setStartingPoint(startingPoint)
print("algo=", algo)
algo.run()
result = algo.getResult()
print("result=", result)
ott.assert_almost_equal(algo.getResult().getOptimalValue(), [-0.5])
|