1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
|
#! /usr/bin/env python
import openturns as ot
import openturns.testing as ott
# Defining parameters
dimension = 3
bounds = ot.Interval(dimension)
size = 25
# Build standard LHS algorithm
distribution = ot.JointDistribution([ot.Uniform(0.0, 1.0)] * dimension)
distribution.setDescription(["U" + str(i) for i in range(dimension)])
lhs = ot.LHSExperiment(distribution, size)
lhs.setRandomShift(False) # centered
lhs.setAlwaysShuffle(True) # randomized
# print the object
print("lhs=", lhs)
print("Bounds of uniform distributions=", distribution.getRange())
# Generate design without optimization
design = lhs.generate()
print("design=", design)
# Defining space fillings
spaceFillingC2 = ot.SpaceFillingC2()
spaceFillingPhiP = ot.SpaceFillingPhiP(10)
spaceFillingMinDist = ot.SpaceFillingMinDist()
# print the criteria on this design
print(
"PhiP=%f, C2=%f"
% (ot.SpaceFillingPhiP().evaluate(design), ot.SpaceFillingC2().evaluate(design))
)
# --------------------------------------------------#
# ------------- Simulated annealing ------------- #
# --------------------------------------------------#
# Geometric profile
T0 = 10.0
iMax = 2000
c = 0.95
geomProfile = ot.GeometricProfile(T0, c, iMax)
# 1) Simulated Annealing LHS with geometric temperature profile, C2
# optimization
optimalLHSAlgorithm = ot.SimulatedAnnealingLHS(lhs, spaceFillingC2, geomProfile)
print("lhs=", optimalLHSAlgorithm)
design = optimalLHSAlgorithm.generate()
print("Generating design using geometric temperature profile & C2 criterion=", design)
result = optimalLHSAlgorithm.getResult()
print(
"Final criteria: C2=%f, PhiP=%f, MinDist=%f"
% (result.getC2(), result.getPhiP(), result.getMinDist())
)
# Linear profile
linearProfile = ot.LinearProfile(T0, iMax)
# 2) Simulated Annealing LHS with linear temperature profile, PhiP optimization
optimalLHSAlgorithm = ot.SimulatedAnnealingLHS(lhs, spaceFillingPhiP, linearProfile)
print("lhs=", optimalLHSAlgorithm)
design = optimalLHSAlgorithm.generate()
print("Generating design using linear temperature profile & PhiP criterion =", design)
result = optimalLHSAlgorithm.getResult()
print(
"Final criteria: C2=%f, PhiP=%f, MinDist=%f"
% (result.getC2(), result.getPhiP(), result.getMinDist())
)
# 3) Simulated Annealing LHS with geometric temperature profile, PhiP
# optimization & initial design
initialDesign = ot.Sample(design)
optimalLHSAlgorithm = ot.SimulatedAnnealingLHS(
initialDesign, distribution, spaceFillingPhiP, geomProfile
)
print("lhs=", optimalLHSAlgorithm)
print("initial design=", initialDesign)
print(
"PhiP=%f, C2=%f"
% (ot.SpaceFillingPhiP().evaluate(design), ot.SpaceFillingC2().evaluate(design))
)
design = optimalLHSAlgorithm.generate()
print("Generating design using linear temperature profile & PhiP criterion =", design)
result = optimalLHSAlgorithm.getResult()
print(
"Final criteria: C2=%f, PhiP=%f, MinDist=%f"
% (result.getC2(), result.getPhiP(), result.getMinDist())
)
# 4) Simulated Annealing LHS with linear temperature profile, PhiP
# optimization and nStart > 1
nStart = 10
design = optimalLHSAlgorithm.generateWithRestart(nStart)
print("Generating design using linear temperature profile & PhiP criterion =", design)
results = optimalLHSAlgorithm.getResult()
print(
"Final criteria: C2=%f, PhiP=%f, MinDist=%f"
% (results.getC2(), results.getPhiP(), results.getMinDist())
)
for i in range(nStart):
design = results.getOptimalDesign(i)
print(" Intermediate design for restart iteration number ", i, design)
print(
" Final criteria: C2=%f, PhiP=%f, MinDist=%f"
% (results.getC2(i), results.getPhiP(i), results.getMinDist(i))
)
# 5) Fix https://github.com/openturns/openturns/issues/1826
optimalLHSAlgorithm = ot.SimulatedAnnealingLHS(
initialDesign, distribution, spaceFillingMinDist, geomProfile
)
design = optimalLHSAlgorithm.generate()
result = optimalLHSAlgorithm.getResult()
# optim ok
# Final MinDist is >= initial one
optimal_design = [
[0.58, 0.3, 0.18],
[0.9, 0.38, 0.3],
[0.38, 0.74, 0.66],
[0.06, 0.5, 0.26],
[0.34, 0.98, 0.5],
[0.26, 0.7, 0.14],
[0.74, 0.34, 0.62],
[0.82, 0.66, 0.58],
[0.78, 0.06, 0.1],
[0.54, 0.94, 0.06],
[0.46, 0.22, 0.54],
[0.1, 0.78, 0.46],
[0.94, 0.02, 0.82],
[0.5, 0.26, 0.86],
[0.42, 0.58, 0.42],
[0.22, 0.18, 0.34],
[0.18, 0.54, 0.94],
[0.14, 0.14, 0.74],
[0.7, 0.46, 0.98],
[0.66, 0.86, 0.78],
[0.98, 0.1, 0.38],
[0.62, 0.62, 0.02],
[0.3, 0.42, 0.7],
[0.02, 0.9, 0.9],
[0.86, 0.82, 0.22],
]
assert result.getMinDist() >= ot.SpaceFillingMinDist().evaluate(initialDesign)
assert result.getC2() <= ot.SpaceFillingMinDist().evaluate(initialDesign)
assert result.getPhiP() <= ot.SpaceFillingPhiP().evaluate(initialDesign)
ott.assert_almost_equal(result.getC2(), 0.05473015652160929)
ott.assert_almost_equal(result.getPhiP(), 3.517772966753692)
ott.assert_almost_equal(result.getMinDist(), 0.29120439557122074)
ott.assert_almost_equal(result.getOptimalDesign(), optimal_design)
|