File: t_SmoothedUniform_std.expout

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (37 lines) | stat: -rw-r--r-- 2,066 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
Distribution  class=SmoothedUniform name=SmoothedUniform dimension=1 a=-0.5 b=1.5 sigma=0.5
Distribution  SmoothedUniform(a = -0.5, b = 1.5, sigma = 0.5)
Mean=  class=Point name=Unnamed dimension=1 values=[0.5]
Covariance=  class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[0.583333]
Elliptical =  True
oneRealization= class=Point name=Unnamed dimension=1 values=[1.15307]
Point=  class=Point name=Unnamed dimension=1 values=[1]
ddf     = class=Point name=Unnamed dimension=1 values=[-0.237539]
log pdf=-0.867507
pdf     =0.419997
cdf=0.729267
ccdf=0.270733
characteristic function= (0.65168889443+0.356019265631j)
pdf gradient     = class=Point name=Unnamed dimension=3 values=[0.205567,0.031972,-0.255266]
cdf gradient     = class=Point name=Unnamed dimension=3 values=[-0.134692,-0.285306,-0.118769]
quantile= class=Point name=Unnamed dimension=1 values=[1.74644]
cdf(quantile)=0.950000
InverseSurvival= class=Point name=Unnamed dimension=1 values=[-0.746443]
Survival(inverseSurvival)=0.950000
Minimum volume interval= [-0.951173, 1.95117]
threshold= 0.95
Minimum volume level set= {x | f(x) <= 2.38884} with f=
MinimumVolumeLevelSetEvaluation(SmoothedUniform(a = -0.5, b = 1.5, sigma = 0.5))
beta=0.091736
Bilateral confidence interval= [-0.951173, 1.95117]
beta=0.95
Unilateral confidence interval (lower tail)= [-4.32531, 1.74644]
beta=0.95
Unilateral confidence interval (upper tail)= [-0.746443, 5.32531]
beta=0.95
mean= class=Point name=Unnamed dimension=1 values=[0.5]
standard deviation= class=Point name=Unnamed dimension=1 values=[0.763763]
skewness= class=Point name=Unnamed dimension=1 values=[0]
kurtosis= class=Point name=Unnamed dimension=1 values=[2.60816]
covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[0.583333]
parameters= [class=PointWithDescription name=SmoothedUniform dimension=3 description=[a,b,sigma] values=[-0.5,1.5,0.5]]
Standard representative= SmoothedUniform(a = -1, b = 1, sigma = 1)