File: t_SquareMatrix_lapack.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (56 lines) | stat: -rwxr-xr-x 1,283 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
#! /usr/bin/env python

import openturns as ot

ot.TESTPREAMBLE()


matrix1 = ot.SquareMatrix(2)
matrix1.setName("matrix1")
matrix1[0, 0] = 1.0
matrix1[1, 0] = 2.0
matrix1[0, 1] = 5.0
matrix1[1, 1] = 12.0
print("matrix1 = ", matrix1)

pt = ot.Point()
pt.add(5.0)
pt.add(0.0)
print("pt = ", pt)

result = matrix1.solveLinearSystem(pt)
print("result = ", result)

determinant = matrix1.computeDeterminant()
print("determinant = %.6g" % determinant)

ev = matrix1.computeEigenValues()
print("ev = ", ev)
ev, evect = matrix1.computeEV()
print("ev=", ev)
print("evect=", evect)
print("evect=")
print(evect.__str__())
maxModule = matrix1.computeLargestEigenValueModule(10, 1e-2)
print("max |ev|=%.6g" % maxModule)

# Check the high dimension determinant computation
matrix2 = ot.SquareMatrix(3)
matrix2[0, 0] = 1.0
matrix2[0, 1] = 2.0
matrix2[0, 2] = 3.0
matrix2[1, 0] = -1.5
matrix2[1, 1] = 2.5
matrix2[1, 2] = -3.5
matrix2[2, 0] = 1.5
matrix2[2, 1] = -3.5
matrix2[2, 2] = 2.5

print("matrix2=")
print(matrix2.__str__())
# Need a specific Python wrapping, e.g returning both value and sign
# sign = 0.0
# value = matrix2.computeLogAbsoluteDeterminant(sign)
# print "log(|det|)=", value, ", sign=", sign
determinant = matrix2.computeDeterminant()
print("determinant = %.6g" % determinant)