File: t_StandardEvent_std.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (86 lines) | stat: -rwxr-xr-x 2,603 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
#! /usr/bin/env python

import openturns as ot

ot.TESTPREAMBLE()


# We create a numerical math function */
myFunction = ot.SymbolicFunction(["E", "F", "L", "I"], ["-F*L^3/(3*E*I)"])

dim = myFunction.getInputDimension()

# We create a normal distribution point of dimension dim
myDistribution = ot.Normal(dim)

# We create a 'usual' RandomVector from the Distribution
vect = ot.RandomVector(myDistribution)

# We create a composite random vector
output = ot.CompositeRandomVector(myFunction, vect)

# We create an StandardEvent from this RandomVector
myStandardEvent = ot.StandardEvent(output, ot.Less(), 1.0)
print("myStandardEvent=", myStandardEvent)

# We compute one realization of the event
# E = (Y=f(X), operator, threshold)
# E as a RandomVector : Y
print(
    "myStandardEvent (as a RandomVector) realization =",
    repr(ot.RandomVector.getRealization(myStandardEvent)),
)

# E as a Bernoulli
print("myStandardEvent realization=", repr(myStandardEvent.getRealization()))

# We compute a sample of the event
print("myStandardEvent sample=", repr(myStandardEvent.getSample(10)))

# Build a standard event based on an event

R = ot.CorrelationMatrix(dim)
for i in range(dim - 1):
    R[i + 1, i] = 0.5

mean = ot.Point(dim, 0.0)
sigma = ot.Point(dim, 1.0)
myDistribution2 = ot.Normal(mean, sigma, R)

# We create a 'usual' RandomVector from the Distribution
vect2 = ot.RandomVector(myDistribution2)

# We create a composite random vector
output2 = ot.CompositeRandomVector(myFunction, vect2)

# We create an Event from this RandomVector */
myEvent = ot.ThresholdEvent(output2, ot.Less(), 1.0)

# Create a StandardEvent based on this Event */
stdEvent = ot.StandardEvent(myEvent)

# Check if the StandardEvent is really a StandardEvent */
# Get a sample from the second antecedent of the standard event */
size = 2000
# Check if the failure probabilities are the same */
print("Failure probability (Event)=%.6f" % myEvent.getSample(size).computeMean()[0])
print(
    "Failure probability (StandardEvent)=%.6f"
    % stdEvent.getSample(size).computeMean()[0]
)

x = [[1.0, 0.5, 1.0, 0.5], [2.0, 1.0, 2.0, 1.0], [3.0, 1.5, 3.0, 1.5]]
p = [0.3, 0.325, 0.375]
myDistribution3 = ot.UserDefined(x, p)

# We create a 'usual' RandomVector from the Distribution */
vect3 = ot.RandomVector(myDistribution3)

# We create a composite random vector */
output3 = ot.CompositeRandomVector(myFunction, vect3)

# We try to create a StandardEvent from this RandomVector */
try:
    myStandardEvent3 = ot.StandardEvent(output3, ot.Less(), 1.0)
except Exception:
    print("Error trying to build myStandardEvent3")