File: t_StationaryCovarianceModelFactory_std.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (47 lines) | stat: -rwxr-xr-x 1,187 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#! /usr/bin/env python

import openturns as ot

ot.TESTPREAMBLE()

# Dimension of the input model
# Size of the TimeGrid
# dimension parameter
dimension = 1

# Amplitude values
amplitude = ot.Point(dimension, 1.00)

# Scale values
scale = ot.Point(dimension, 1.0)

size = 128
timeGrid = ot.RegularGrid(0.0, 0.1, size)

# Cauchy model
model = ot.CauchyModel(scale, amplitude)
covModel = ot.AbsoluteExponential(scale, amplitude)
myProcess = ot.SpectralGaussianProcess(model, timeGrid)

# Create a sample of size N = 1000
sample = myProcess.getSample(1000)

# StationaryCovarianceModelFactory using default parameter - Factory
# initiate
myFactory = ot.StationaryCovarianceModelFactory()

# Build a UserDefinedCovarianceModel using the Wellch method
myCovarianceModel = myFactory.buildAsUserDefinedStationaryCovarianceModel(sample)
tg = myCovarianceModel.getTimeGrid()

# Get the time grid of the model
for i in range(tg.getN()):
    t = tg.getValue(i)
    estimatedValue = myCovarianceModel(t)[0, 0]
    modelValue = covModel(t)[0, 0]
    print(
        "Covariance C( %.6g" % t,
        ") : ",
        " evaluation =  %.6g" % estimatedValue,
        " model =  %.6g" % modelValue,
    )