1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
#! /usr/bin/env python
import openturns as ot
import openturns.testing as ott
ot.TESTPREAMBLE()
# Instantiate one distribution object
allDistributions = [ot.Student(6.5, -0.5, 2.0)]
dim = 2
R = ot.CorrelationMatrix(dim)
mu = list()
sigma = list()
for i in range(dim):
mu.append(i)
sigma.append((1.0 + i) / dim)
for j in range(i):
R[i, j] = 1.0 / (1.0 + dim + i + j)
allDistributions.append(ot.Student(7.5, mu, sigma, R))
for distribution in allDistributions:
dim = distribution.getDimension()
print("Distribution ", repr(distribution))
print("Distribution ", distribution)
# Is this distribution elliptical ?
print("Elliptical = ", distribution.isElliptical())
# Is this distribution continuous ?
print("Continuous = ", distribution.isContinuous())
# Test for realization of distribution
oneRealization = distribution.getRealization()
print("oneRealization=", repr(oneRealization))
# Test for sampling
size = 10000
oneSample = distribution.getSample(size)
print("oneSample first=", repr(oneSample[0]), " last=", repr(oneSample[size - 1]))
print("mean=", repr(oneSample.computeMean()))
print("covariance=", repr(oneSample.computeCovariance()))
# Define a point
point = ot.Point(distribution.getDimension(), 1.0)
print("Point= ", repr(point))
# derivative of PDF with regards its arguments
DDF = distribution.computeDDF(point)
print("ddf =", repr(DDF))
# PDF value
LPDF = distribution.computeLogPDF(point)
print("log pdf=%.6f" % LPDF)
PDF = distribution.computePDF(point)
print("pdf =%.6f" % PDF)
CDF = distribution.computeCDF(point)
print("cdf=%.6f" % CDF)
CCDF = distribution.computeComplementaryCDF(point)
print("ccdf=%.6f" % CCDF)
# quantile
quantile = distribution.computeQuantile(0.95)
print("quantile=", repr(quantile))
print("cdf(quantile)=%.6f" % distribution.computeCDF(quantile))
# Get 95% survival function
inverseSurvival = ot.Point(distribution.computeInverseSurvivalFunction(0.95))
print("InverseSurvival=", repr(inverseSurvival))
print(
"Survival(inverseSurvival)=%.6f"
% distribution.computeSurvivalFunction(inverseSurvival)
)
print("entropy=%.6f" % distribution.computeEntropy())
# Confidence regions
interval, threshold = distribution.computeMinimumVolumeIntervalWithMarginalProbability(
0.95
)
print("Minimum volume interval=", interval)
print("threshold=", ot.Point(1, threshold))
levelSet, beta = distribution.computeMinimumVolumeLevelSetWithThreshold(0.95)
print("Minimum volume level set=", levelSet)
print("beta=", ot.Point(1, beta))
interval, beta = distribution.computeBilateralConfidenceIntervalWithMarginalProbability(
0.95
)
print("Bilateral confidence interval=", interval)
print("beta=", ot.Point(1, beta))
(
interval,
beta,
) = distribution.computeUnilateralConfidenceIntervalWithMarginalProbability(0.95, False)
print("Unilateral confidence interval (lower tail)=", interval)
print("beta=", ot.Point(1, beta))
(
interval,
beta,
) = distribution.computeUnilateralConfidenceIntervalWithMarginalProbability(0.95, True)
print("Unilateral confidence interval (upper tail)=", interval)
print("beta=", ot.Point(1, beta))
mean = distribution.getMean()
print("mean=", repr(mean))
standardDeviation = distribution.getStandardDeviation()
print("standard deviation=", repr(standardDeviation))
skewness = distribution.getSkewness()
print("skewness=", repr(skewness))
kurtosis = distribution.getKurtosis()
print("kurtosis=", repr(kurtosis))
covariance = distribution.getCovariance()
print("covariance=", repr(covariance))
parameters = distribution.getParametersCollection()
print("parameters=", repr(parameters))
print("Standard representative=", distribution.getStandardRepresentative())
# Specific to this distribution
beta = point.normSquare()
densityGenerator = distribution.computeDensityGenerator(beta)
print("density generator=%.6f" % densityGenerator)
print(
"pdf via density generator=%.6f"
% ot.EllipticalDistribution.computePDF(distribution, point)
)
densityGeneratorDerivative = distribution.computeDensityGeneratorDerivative(beta)
print("density generator derivative =%.6f" % densityGeneratorDerivative)
eps = 1e-5
print(
"density generator derivative (FD)=%.6f"
% (
(
distribution.computeDensityGenerator(beta + eps)
- distribution.computeDensityGenerator(beta - eps)
)
/ (2.0 * eps)
)
)
densityGeneratorSecondDerivative = distribution.computeDensityGeneratorSecondDerivative(
beta
)
print(
"density generator second derivative =%.6f" % densityGeneratorSecondDerivative
)
print(
"density generator second derivative (FD)=%.6f"
% (
(
distribution.computeDensityGeneratorDerivative(beta + eps)
- distribution.computeDensityGeneratorDerivative(beta - eps)
)
/ (2.0 * eps)
)
)
x = 0.6
y = [0.2] * (dim - 1)
print("conditional PDF=%.6f" % distribution.computeConditionalPDF(x, y))
print("conditional CDF=%.6f" % distribution.computeConditionalCDF(x, y))
print("conditional quantile=%.6f" % distribution.computeConditionalQuantile(x, y))
pt = ot.Point([i + 1.5 for i in range(dim)])
print(
"sequential conditional PDF=", distribution.computeSequentialConditionalPDF(point)
)
resCDF = distribution.computeSequentialConditionalCDF(pt)
print("sequential conditional CDF(", pt, ")=", resCDF)
print(
"sequential conditional quantile(",
resCDF,
")=",
distribution.computeSequentialConditionalQuantile(resCDF),
)
ot.Log.Show(ot.Log.TRACE)
validation = ott.DistributionValidation(distribution)
validation.skipCorrelation() # slow
validation.run()
# non-spd cov
dist = ot.Student(
4.2,
[0] * 3,
ot.CovarianceMatrix([[1.0, 1.0, 0.0], [1.0, 1.0, 0.0], [0.0, 0.0, 1.0]]),
)
sample = dist.getSample(10)
|