File: t_Student_std.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (182 lines) | stat: -rwxr-xr-x 5,895 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
#! /usr/bin/env python

import openturns as ot
import openturns.testing as ott

ot.TESTPREAMBLE()

# Instantiate one distribution object
allDistributions = [ot.Student(6.5, -0.5, 2.0)]
dim = 2
R = ot.CorrelationMatrix(dim)
mu = list()
sigma = list()
for i in range(dim):
    mu.append(i)
    sigma.append((1.0 + i) / dim)
    for j in range(i):
        R[i, j] = 1.0 / (1.0 + dim + i + j)
allDistributions.append(ot.Student(7.5, mu, sigma, R))
for distribution in allDistributions:
    dim = distribution.getDimension()
    print("Distribution ", repr(distribution))
    print("Distribution ", distribution)

    # Is this distribution elliptical ?
    print("Elliptical = ", distribution.isElliptical())

    # Is this distribution continuous ?
    print("Continuous = ", distribution.isContinuous())

    # Test for realization of distribution
    oneRealization = distribution.getRealization()
    print("oneRealization=", repr(oneRealization))

    # Test for sampling
    size = 10000
    oneSample = distribution.getSample(size)
    print("oneSample first=", repr(oneSample[0]), " last=", repr(oneSample[size - 1]))
    print("mean=", repr(oneSample.computeMean()))
    print("covariance=", repr(oneSample.computeCovariance()))

    # Define a point
    point = ot.Point(distribution.getDimension(), 1.0)
    print("Point= ", repr(point))

    # derivative of PDF with regards its arguments
    DDF = distribution.computeDDF(point)
    print("ddf     =", repr(DDF))

    # PDF value
    LPDF = distribution.computeLogPDF(point)
    print("log pdf=%.6f" % LPDF)
    PDF = distribution.computePDF(point)
    print("pdf     =%.6f" % PDF)

    CDF = distribution.computeCDF(point)
    print("cdf=%.6f" % CDF)
    CCDF = distribution.computeComplementaryCDF(point)
    print("ccdf=%.6f" % CCDF)

# quantile
quantile = distribution.computeQuantile(0.95)
print("quantile=", repr(quantile))
print("cdf(quantile)=%.6f" % distribution.computeCDF(quantile))
# Get 95% survival function
inverseSurvival = ot.Point(distribution.computeInverseSurvivalFunction(0.95))
print("InverseSurvival=", repr(inverseSurvival))
print(
    "Survival(inverseSurvival)=%.6f"
    % distribution.computeSurvivalFunction(inverseSurvival)
)
print("entropy=%.6f" % distribution.computeEntropy())

# Confidence regions
interval, threshold = distribution.computeMinimumVolumeIntervalWithMarginalProbability(
    0.95
)
print("Minimum volume interval=", interval)
print("threshold=", ot.Point(1, threshold))
levelSet, beta = distribution.computeMinimumVolumeLevelSetWithThreshold(0.95)
print("Minimum volume level set=", levelSet)
print("beta=", ot.Point(1, beta))
interval, beta = distribution.computeBilateralConfidenceIntervalWithMarginalProbability(
    0.95
)
print("Bilateral confidence interval=", interval)
print("beta=", ot.Point(1, beta))
(
    interval,
    beta,
) = distribution.computeUnilateralConfidenceIntervalWithMarginalProbability(0.95, False)
print("Unilateral confidence interval (lower tail)=", interval)
print("beta=", ot.Point(1, beta))
(
    interval,
    beta,
) = distribution.computeUnilateralConfidenceIntervalWithMarginalProbability(0.95, True)
print("Unilateral confidence interval (upper tail)=", interval)
print("beta=", ot.Point(1, beta))

mean = distribution.getMean()
print("mean=", repr(mean))
standardDeviation = distribution.getStandardDeviation()
print("standard deviation=", repr(standardDeviation))
skewness = distribution.getSkewness()
print("skewness=", repr(skewness))
kurtosis = distribution.getKurtosis()
print("kurtosis=", repr(kurtosis))
covariance = distribution.getCovariance()
print("covariance=", repr(covariance))
parameters = distribution.getParametersCollection()
print("parameters=", repr(parameters))
print("Standard representative=", distribution.getStandardRepresentative())

# Specific to this distribution
beta = point.normSquare()
densityGenerator = distribution.computeDensityGenerator(beta)
print("density generator=%.6f" % densityGenerator)
print(
    "pdf via density generator=%.6f"
    % ot.EllipticalDistribution.computePDF(distribution, point)
)
densityGeneratorDerivative = distribution.computeDensityGeneratorDerivative(beta)
print("density generator derivative     =%.6f" % densityGeneratorDerivative)
eps = 1e-5
print(
    "density generator derivative (FD)=%.6f"
    % (
        (
            distribution.computeDensityGenerator(beta + eps)
            - distribution.computeDensityGenerator(beta - eps)
        )
        / (2.0 * eps)
    )
)
densityGeneratorSecondDerivative = distribution.computeDensityGeneratorSecondDerivative(
    beta
)
print(
    "density generator second derivative     =%.6f" % densityGeneratorSecondDerivative
)
print(
    "density generator second derivative (FD)=%.6f"
    % (
        (
            distribution.computeDensityGeneratorDerivative(beta + eps)
            - distribution.computeDensityGeneratorDerivative(beta - eps)
        )
        / (2.0 * eps)
    )
)

x = 0.6
y = [0.2] * (dim - 1)
print("conditional PDF=%.6f" % distribution.computeConditionalPDF(x, y))
print("conditional CDF=%.6f" % distribution.computeConditionalCDF(x, y))
print("conditional quantile=%.6f" % distribution.computeConditionalQuantile(x, y))
pt = ot.Point([i + 1.5 for i in range(dim)])
print(
    "sequential conditional PDF=", distribution.computeSequentialConditionalPDF(point)
)
resCDF = distribution.computeSequentialConditionalCDF(pt)
print("sequential conditional CDF(", pt, ")=", resCDF)
print(
    "sequential conditional quantile(",
    resCDF,
    ")=",
    distribution.computeSequentialConditionalQuantile(resCDF),
)

ot.Log.Show(ot.Log.TRACE)
validation = ott.DistributionValidation(distribution)
validation.skipCorrelation()  # slow
validation.run()

# non-spd cov
dist = ot.Student(
    4.2,
    [0] * 3,
    ot.CovarianceMatrix([[1.0, 1.0, 0.0], [1.0, 1.0, 0.0], [0.0, 0.0, 1.0]]),
)
sample = dist.getSample(10)