File: t_Text_std.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (53 lines) | stat: -rwxr-xr-x 1,172 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
#! /usr/bin/env python

import openturns as ot

ot.TESTPREAMBLE()

# Instantiate one distribution object
dim = 2
meanPoint = ot.Point(dim, 1.0)
meanPoint[0] = 0.5
meanPoint[1] = -0.5
sigma = ot.Point(dim, 1.0)
sigma[0] = 2.0
sigma[1] = 3.0
R = ot.CorrelationMatrix(dim)
for i in range(1, dim):
    R[i, i - 1] = 0.5

distribution = ot.Normal(meanPoint, sigma, R)

# Test for sampling
size = 30
sample = distribution.getSample(size)

# Create an empty graph
myGraph = ot.Graph("Normal sample", "x1", "x2", True, "topright")

# Display extrema indices
x1 = [x[0] for x in sample[:, 0]]
x2 = [x[0] for x in sample[:, 1]]
idx = [0] * 4
idx[0] = x1.index(min(x1))
idx[1] = x1.index(max(x1))
idx[2] = x2.index(min(x2))
idx[3] = x2.index(max(x2))

sample.add(distribution.getSample(5))
labels = ot.Description(sample.getSize(), ".")
for i in range(4):
    labels[idx[i]] = str(idx[i])

position = ot.Description(sample.getSize(), "top")
position[idx[0]] = "right"
position[idx[1]] = "left"
position[idx[2]] = "top"
position[idx[3]] = "bottom"

myText = ot.Text(sample, labels)
myText.setColor("red")
myText.setTextPositions(position)
myText.setTextSize(1.0)

myGraph.add(myText)