1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
#! /usr/bin/env python
import openturns as ot
import openturns.testing as ott
ot.TESTPREAMBLE()
coll = [
ot.Trapezoidal(1.0, 1.2, 3.0, 14.0),
ot.Trapezoidal(1.0, 1.0, 3.0, 14.0),
ot.Trapezoidal(1.0, 1.2, 1.2, 14.0),
ot.Trapezoidal(1.0, 1.0, 1.0, 14.0),
ot.Trapezoidal(1.0, 1.2, 14.0, 14.0),
ot.Trapezoidal(1.0, 1.0, 14.0, 14.0),
ot.Trapezoidal(1.0, 14.0, 14.0, 14.0),
]
# Instantiate one distribution object
for distribution in coll:
print("Distribution ", repr(distribution))
print("Distribution ", distribution)
# Get mean and covariance
print("Mean= ", repr(distribution.getMean()))
print("Covariance= ", repr(distribution.getCovariance()))
# Is this distribution elliptical ?
print("Elliptical = ", distribution.isElliptical())
# Test for realization of distribution
oneRealization = distribution.getRealization()
print("oneRealization=", repr(oneRealization))
# Define a point
point = ot.Point(distribution.getDimension(), 1.1)
print("Point= ", repr(point))
# derivative of PDF with regards its arguments
DDF = distribution.computeDDF(point)
print("ddf =", repr(DDF))
# PDF value
LPDF = distribution.computeLogPDF(point)
print("log pdf=%.6f" % LPDF)
PDF = distribution.computePDF(point)
print("pdf =%.6f" % PDF)
# derivative of the PDF with regards the parameters of the distribution
CDF = distribution.computeCDF(point)
print("cdf=%.6f" % CDF)
CCDF = distribution.computeComplementaryCDF(point)
print("ccdf=%.6f" % CCDF)
CF = distribution.computeCharacteristicFunction(point[0])
print("characteristic function= (%.12g%+.12gj)" % (CF.real, CF.imag))
try:
PDFgr = distribution.computePDFGradient(point)
print("pdf gradient =", repr(PDFgr))
# derivative of the logPDF with regards the parameters of the distribution
logPDFgr = distribution.computeLogPDFGradient(point)
print("log-pdf gradient =", repr(logPDFgr))
# derivative of the PDF with regards the parameters of the distribution
CDFgr = distribution.computeCDFGradient(point)
print("cdf gradient =", repr(CDFgr))
except Exception:
pass
# quantile
quantile = distribution.computeQuantile(0.95)
print("quantile=", repr(quantile))
print("cdf(quantile)=%.6f" % distribution.computeCDF(quantile))
# Get 95% survival function
inverseSurvival = ot.Point(distribution.computeInverseSurvivalFunction(0.95))
print("InverseSurvival=", repr(inverseSurvival))
print(
"Survival(inverseSurvival)=%.6f"
% distribution.computeSurvivalFunction(inverseSurvival)
)
print("entropy=%.6f" % distribution.computeEntropy())
# Confidence regions
(
interval,
threshold,
) = distribution.computeMinimumVolumeIntervalWithMarginalProbability(0.95)
print("Minimum volume interval=", interval)
print("threshold=", ot.Point(1, threshold))
levelSet, beta = distribution.computeMinimumVolumeLevelSetWithThreshold(0.95)
print("Minimum volume level set=", levelSet)
print("beta=", ot.Point(1, beta))
(
interval,
beta,
) = distribution.computeBilateralConfidenceIntervalWithMarginalProbability(0.95)
print("Bilateral confidence interval=", interval)
print("beta=", ot.Point(1, beta))
(
interval,
beta,
) = distribution.computeUnilateralConfidenceIntervalWithMarginalProbability(
0.95, False
)
print("Unilateral confidence interval (lower tail)=", interval)
print("beta=", ot.Point(1, beta))
(
interval,
beta,
) = distribution.computeUnilateralConfidenceIntervalWithMarginalProbability(
0.95, True
)
print("Unilateral confidence interval (upper tail)=", interval)
print("beta=", ot.Point(1, beta))
mean = distribution.getMean()
print("mean=", repr(mean))
standardDeviation = distribution.getStandardDeviation()
print("standard deviation=", repr(standardDeviation))
skewness = distribution.getSkewness()
print("skewness=", repr(skewness))
kurtosis = distribution.getKurtosis()
print("kurtosis=", repr(kurtosis))
covariance = distribution.getCovariance()
print("covariance=", repr(covariance))
parameters = distribution.getParametersCollection()
print("parameters=", repr(parameters))
print("Standard representative=", distribution.getStandardRepresentative())
roughness = distribution.getRoughness()
print("roughness=", ot.Point(1, roughness))
# check only non-degenerate cases
if len(set(distribution.getParameter())) == 4:
ot.Log.Show(ot.Log.TRACE)
validation = ott.DistributionValidation(distribution)
validation.run()
|