File: t_Trapezoidal_std.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (136 lines) | stat: -rwxr-xr-x 4,815 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
#! /usr/bin/env python

import openturns as ot
import openturns.testing as ott

ot.TESTPREAMBLE()

coll = [
    ot.Trapezoidal(1.0, 1.2, 3.0, 14.0),
    ot.Trapezoidal(1.0, 1.0, 3.0, 14.0),
    ot.Trapezoidal(1.0, 1.2, 1.2, 14.0),
    ot.Trapezoidal(1.0, 1.0, 1.0, 14.0),
    ot.Trapezoidal(1.0, 1.2, 14.0, 14.0),
    ot.Trapezoidal(1.0, 1.0, 14.0, 14.0),
    ot.Trapezoidal(1.0, 14.0, 14.0, 14.0),
]

# Instantiate one distribution object
for distribution in coll:
    print("Distribution ", repr(distribution))
    print("Distribution ", distribution)

    # Get mean and covariance
    print("Mean= ", repr(distribution.getMean()))
    print("Covariance= ", repr(distribution.getCovariance()))

    # Is this distribution elliptical ?
    print("Elliptical = ", distribution.isElliptical())

    # Test for realization of distribution
    oneRealization = distribution.getRealization()
    print("oneRealization=", repr(oneRealization))

    # Define a point
    point = ot.Point(distribution.getDimension(), 1.1)
    print("Point= ", repr(point))

    # derivative of PDF with regards its arguments
    DDF = distribution.computeDDF(point)
    print("ddf     =", repr(DDF))

    # PDF value
    LPDF = distribution.computeLogPDF(point)
    print("log pdf=%.6f" % LPDF)
    PDF = distribution.computePDF(point)
    print("pdf     =%.6f" % PDF)

    # derivative of the PDF with regards the parameters of the distribution
    CDF = distribution.computeCDF(point)
    print("cdf=%.6f" % CDF)
    CCDF = distribution.computeComplementaryCDF(point)
    print("ccdf=%.6f" % CCDF)
    CF = distribution.computeCharacteristicFunction(point[0])
    print("characteristic function= (%.12g%+.12gj)" % (CF.real, CF.imag))
    try:
        PDFgr = distribution.computePDFGradient(point)
        print("pdf gradient     =", repr(PDFgr))

        # derivative of the logPDF with regards the parameters of the distribution
        logPDFgr = distribution.computeLogPDFGradient(point)
        print("log-pdf gradient     =", repr(logPDFgr))

        # derivative of the PDF with regards the parameters of the distribution
        CDFgr = distribution.computeCDFGradient(point)
        print("cdf gradient     =", repr(CDFgr))
    except Exception:
        pass

    # quantile
    quantile = distribution.computeQuantile(0.95)
    print("quantile=", repr(quantile))
    print("cdf(quantile)=%.6f" % distribution.computeCDF(quantile))
    # Get 95% survival function
    inverseSurvival = ot.Point(distribution.computeInverseSurvivalFunction(0.95))
    print("InverseSurvival=", repr(inverseSurvival))
    print(
        "Survival(inverseSurvival)=%.6f"
        % distribution.computeSurvivalFunction(inverseSurvival)
    )
    print("entropy=%.6f" % distribution.computeEntropy())

    # Confidence regions
    (
        interval,
        threshold,
    ) = distribution.computeMinimumVolumeIntervalWithMarginalProbability(0.95)
    print("Minimum volume interval=", interval)
    print("threshold=", ot.Point(1, threshold))
    levelSet, beta = distribution.computeMinimumVolumeLevelSetWithThreshold(0.95)
    print("Minimum volume level set=", levelSet)
    print("beta=", ot.Point(1, beta))
    (
        interval,
        beta,
    ) = distribution.computeBilateralConfidenceIntervalWithMarginalProbability(0.95)
    print("Bilateral confidence interval=", interval)
    print("beta=", ot.Point(1, beta))
    (
        interval,
        beta,
    ) = distribution.computeUnilateralConfidenceIntervalWithMarginalProbability(
        0.95, False
    )
    print("Unilateral confidence interval (lower tail)=", interval)
    print("beta=", ot.Point(1, beta))
    (
        interval,
        beta,
    ) = distribution.computeUnilateralConfidenceIntervalWithMarginalProbability(
        0.95, True
    )
    print("Unilateral confidence interval (upper tail)=", interval)
    print("beta=", ot.Point(1, beta))

    mean = distribution.getMean()
    print("mean=", repr(mean))
    standardDeviation = distribution.getStandardDeviation()
    print("standard deviation=", repr(standardDeviation))
    skewness = distribution.getSkewness()
    print("skewness=", repr(skewness))
    kurtosis = distribution.getKurtosis()
    print("kurtosis=", repr(kurtosis))
    covariance = distribution.getCovariance()
    print("covariance=", repr(covariance))
    parameters = distribution.getParametersCollection()
    print("parameters=", repr(parameters))
    print("Standard representative=", distribution.getStandardRepresentative())

    roughness = distribution.getRoughness()
    print("roughness=", ot.Point(1, roughness))

    # check only non-degenerate cases
    if len(set(distribution.getParameter())) == 4:
        ot.Log.Show(ot.Log.TRACE)
        validation = ott.DistributionValidation(distribution)
        validation.run()