File: t_TrendFactory_std.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (67 lines) | stat: -rwxr-xr-x 1,884 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
#! /usr/bin/env python

import openturns as ot

ot.TESTPREAMBLE()


inVar = ["t"]
functions = []
functions.append(ot.SymbolicFunction(inVar, ["1"]))
functions.append(ot.SymbolicFunction(inVar, ["cos(2 * t)"]))
functions.append(ot.SymbolicFunction(inVar, ["sin(2 * t)"]))

# We build the weights
coefficients = ot.Sample(0, 2)
p = ot.Point(2)
p[0] = 1.5
p[1] = 2.5
coefficients.add(p)
p[0] = -0.5
p[1] = 0.5
coefficients.add(p)
p[0] = 1.0
p[1] = 1.0
coefficients.add(p)

# Third, build the function
myFunction = ot.DualLinearCombinationFunction(functions, coefficients)

# Fourth : we build a time series for estimation
# it issued from a white noise
dimension = 2

# Fix the realization as a Normal
noiseDistribution = ot.Normal(dimension)

# TimeGrid parameters
N = 1000
timeStart = 0.0
timeStep = 0.1
timeGrid = ot.RegularGrid(timeStart, timeStep, N)

# White noise
myWhiteNoise = ot.WhiteNoise(noiseDistribution, timeGrid)

realization = ot.TimeSeries(myWhiteNoise.getRealization())
print("White noise realization = ", realization)

# We make a trend transform to the time series
# We get a time series which contains values of time
myTransformFunction = ot.TrendTransform(myFunction, timeGrid)
myTimeSeries = ot.TimeSeries(timeGrid, myTransformFunction(realization.getValues()))
print("myTimeSeries = ", myTimeSeries)

# We wants to get the coefficients using a factory
# Build a factory using default constructor
myDefaultFactory = ot.TrendFactory()
print("myDefaultFactory = ", myDefaultFactory)

myEstimateTrend = myDefaultFactory.build(myTimeSeries, ot.Basis(functions))
print("myEstimateTrend = ", myEstimateTrend)

# We fix a new fitting algorithm
myDefaultFactory.setFittingAlgorithm(ot.KFold())
print("myDefaultFactory = ", myDefaultFactory)
myNewEstimateTrend = myDefaultFactory.build(myTimeSeries, ot.Basis(functions))
print("myNewEstimateTrend = ", myNewEstimateTrend)