File: t_Triangular_std.expout

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (127 lines) | stat: -rw-r--r-- 5,772 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
Distribution  Triangular(a = -0.5, m = 1.5, b = 2.5)
Elliptical =  False
Continuous =  True
oneRealization= class=Point name=Unnamed dimension=1 values=[1.44403]
Point=  class=Point name=Unnamed dimension=1 values=[1]
ddf     = class=Point name=Unnamed dimension=1 values=[0.333333]
log pdf=-0.693147
pdf     =0.500000
cdf=0.375000
ccdf=0.625000
characteristic function= (0.312305424736+0.758322070069j)
pdf gradient     = class=Point name=Unnamed dimension=3 values=[0.0833333,-0.25,-0.166667]
cdf gradient     = class=Point name=Unnamed dimension=3 values=[-0.1875,-0.1875,-0.125]
quantile= class=Point name=Unnamed dimension=1 values=[0.724745]
cdf(quantile)=0.250000
InverseSurvival= class=Point name=Unnamed dimension=1 values=[0.0477226]
Survival(inverseSurvival)=0.950000
entropy=0.905465
Minimum volume interval= [-0.0527864, 2.27639]
threshold= [0.95]
Minimum volume level set= {x | f(x) <= 1.90333} with f=
MinimumVolumeLevelSetEvaluation(Triangular(a = -0.5, m = 1.5, b = 2.5))
beta= [0.149071]
Bilateral confidence interval= [-0.112702, 2.22614]
beta= [0.95]
Unilateral confidence interval (lower tail)= [-0.5, 2.1127]
beta= [0.95]
Unilateral confidence interval (upper tail)= [0.0477226, 2.5]
beta= [0.95]
Point=  class=Point name=Unnamed dimension=1 values=[2]
ddf     = class=Point name=Unnamed dimension=1 values=[-0.666667]
log pdf=-1.098612
pdf     =0.333333
cdf=0.916667
ccdf=0.083333
pdf gradient     = class=Point name=Unnamed dimension=3 values=[0.111111,0.333333,0.222222]
cdf gradient     = class=Point name=Unnamed dimension=3 values=[-0.0277778,-0.0833333,-0.222222]
quantile= class=Point name=Unnamed dimension=1 values=[2.1127]
cdf(quantile)=0.950000
mean= class=Point name=Unnamed dimension=1 values=[1.16667]
standard deviation= class=Point name=Unnamed dimension=1 values=[0.62361]
skewness= class=Point name=Unnamed dimension=1 values=[-0.305441]
kurtosis= class=Point name=Unnamed dimension=1 values=[2.4]
covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[0.388889]
parameters= [class=PointWithDescription name=X0 dimension=3 description=[a,m,b] values=[-0.5,1.5,2.5]]
Distribution  Triangular(a = -0.5, m = -0.5, b = 2.5)
Elliptical =  False
Continuous =  True
oneRealization= class=Point name=Unnamed dimension=1 values=[0.606457]
Point=  class=Point name=Unnamed dimension=1 values=[1]
ddf     = class=Point name=Unnamed dimension=1 values=[-0.222222]
log pdf=-1.098612
pdf     =0.333333
cdf=0.750000
ccdf=0.250000
characteristic function= (0.692667287389+0.345522222881j)
quantile= class=Point name=Unnamed dimension=1 values=[-0.0980762]
cdf(quantile)=0.250000
InverseSurvival= class=Point name=Unnamed dimension=1 values=[-0.424038]
Survival(inverseSurvival)=0.950000
entropy=0.905465
Minimum volume interval= [-0.5, 1.82918]
threshold= [0.95]
Minimum volume level set= {x | f(x) <= 1.90333} with f=
MinimumVolumeLevelSetEvaluation(Triangular(a = -0.5, m = -0.5, b = 2.5))
beta= [0.149071]
Bilateral confidence interval= [-0.462263, 2.02566]
beta= [0.95]
Unilateral confidence interval (lower tail)= [-0.5, 1.82918]
beta= [0.95]
Unilateral confidence interval (upper tail)= [-0.424038, 2.5]
beta= [0.95]
Point=  class=Point name=Unnamed dimension=1 values=[2]
ddf     = class=Point name=Unnamed dimension=1 values=[-0.222222]
log pdf=-2.197225
pdf     =0.111111
cdf=0.972222
ccdf=0.027778
quantile= class=Point name=Unnamed dimension=1 values=[1.82918]
cdf(quantile)=0.950000
mean= class=Point name=Unnamed dimension=1 values=[0.5]
standard deviation= class=Point name=Unnamed dimension=1 values=[0.707107]
skewness= class=Point name=Unnamed dimension=1 values=[0.565685]
kurtosis= class=Point name=Unnamed dimension=1 values=[2.4]
covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[0.5]
parameters= [class=PointWithDescription name=X0 dimension=3 description=[a,m,b] values=[-0.5,-0.5,2.5]]
Distribution  Triangular(a = -0.5, m = 2.5, b = 2.5)
Elliptical =  False
Continuous =  True
oneRealization= class=Point name=Unnamed dimension=1 values=[1.58512]
Point=  class=Point name=Unnamed dimension=1 values=[1]
ddf     = class=Point name=Unnamed dimension=1 values=[0.222222]
log pdf=-1.098612
pdf     =0.333333
cdf=0.250000
ccdf=0.750000
characteristic function= (0.0259311677499+0.773628562078j)
quantile= class=Point name=Unnamed dimension=1 values=[1]
cdf(quantile)=0.250000
InverseSurvival= class=Point name=Unnamed dimension=1 values=[0.17082]
Survival(inverseSurvival)=0.950000
entropy=0.905465
Minimum volume interval= [0.17082, 2.5]
threshold= [0.95]
Minimum volume level set= {x | f(x) <= 1.90333} with f=
MinimumVolumeLevelSetEvaluation(Triangular(a = -0.5, m = 2.5, b = 2.5))
beta= [0.149071]
Bilateral confidence interval= [-0.0256584, 2.46226]
beta= [0.95]
Unilateral confidence interval (lower tail)= [-0.5, 2.42404]
beta= [0.95]
Unilateral confidence interval (upper tail)= [0.17082, 2.5]
beta= [0.95]
Point=  class=Point name=Unnamed dimension=1 values=[2]
ddf     = class=Point name=Unnamed dimension=1 values=[0.222222]
log pdf=-0.587787
pdf     =0.555556
cdf=0.694444
ccdf=0.305556
quantile= class=Point name=Unnamed dimension=1 values=[2.42404]
cdf(quantile)=0.950000
mean= class=Point name=Unnamed dimension=1 values=[1.5]
standard deviation= class=Point name=Unnamed dimension=1 values=[0.707107]
skewness= class=Point name=Unnamed dimension=1 values=[-0.565685]
kurtosis= class=Point name=Unnamed dimension=1 values=[2.4]
covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[0.5]
parameters= [class=PointWithDescription name=X0 dimension=3 description=[a,m,b] values=[-0.5,2.5,2.5]]