File: t_TruncatedDistribution_std.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (259 lines) | stat: -rwxr-xr-x 9,815 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
#! /usr/bin/env python

import openturns as ot
import openturns.testing as ott
import math as m


def cleanPoint(inPoint):
    dim = inPoint.getDimension()
    for i in range(dim):
        if m.fabs(inPoint[i]) < 1.0e-10:
            inPoint[i] = 0.0
    return inPoint


def cleanCovariance(inCovariance):
    dim = inCovariance.getDimension()
    for j in range(dim):
        for i in range(dim):
            if m.fabs(inCovariance[i, j]) < 1.0e-10:
                inCovariance[i, j] = 0.0
    return inCovariance


# Instantiate one distribution object
referenceDistribution = [
    ot.TruncatedNormal(2.0, 1.5, 1.0, 4.0),
    ot.TruncatedNormal(2.0, 1.5, 1.0, 200.0),
    ot.TruncatedNormal(2.0, 1.5, -200.0, 4.0),
    ot.TruncatedNormal(2.0, 1.5, 1.0, 4.0),
]
distribution = [
    ot.TruncatedDistribution(ot.Normal(2.0, 1.5), 1.0, 4.0),
    ot.TruncatedDistribution(ot.Normal(2.0, 1.5), 1.0, ot.TruncatedDistribution.LOWER),
    ot.TruncatedDistribution(ot.Normal(2.0, 1.5), 4.0, ot.TruncatedDistribution.UPPER),
    ot.TruncatedDistribution(
        ot.Normal(2.0, 1.5), ot.Interval([1.0], [4.0], [True], [True])
    ),
]

# add a 2-d test
dimension = 2
# This distribution takes too much time for the test
# size = 70
# ref = ot.Normal(dimension)
# sample = ref.getSample(size)
# ks = ot.KernelSmoothing().build(sample)
# Use a multivariate Normal distribution instead
ks = ot.Normal(2)
truncatedKS = ot.TruncatedDistribution(
    ks, ot.Interval([-0.5] * dimension, [2.0] * dimension)
)
distribution.append(truncatedKS)
referenceDistribution.append(ks)  # N/A
# Add a non-truncated example
weibull = ot.WeibullMin(2.0, 3.0)
distribution.append(ot.TruncatedDistribution(weibull))
referenceDistribution.append(weibull)
ot.RandomGenerator.SetSeed(0)

for testCase in range(len(distribution)):
    print("Distribution ", distribution[testCase])

    # Is this distribution elliptical ?
    print("Elliptical = ", distribution[testCase].isElliptical())

    # Is this distribution continuous ?
    print("Continuous = ", distribution[testCase].isContinuous())

    # Test for realization of distribution
    oneRealization = distribution[testCase].getRealization()
    print("oneRealization=", repr(oneRealization))

    # Test for sampling
    size = 10000
    oneSample = distribution[testCase].getSample(size)
    print("oneSample first=", repr(oneSample[0]), " last=", repr(oneSample[size - 1]))
    print("mean=", repr(oneSample.computeMean()))
    print("covariance=", repr(oneSample.computeCovariance()))

    # Define a point
    point = ot.Point(distribution[testCase].getDimension(), 1.5)
    print("Point= ", repr(point))

    # Show PDF and CDF of point
    eps = 1e-5

    DDF = distribution[testCase].computeDDF(point)
    print("ddf      =", repr(DDF))
    print("ddf (ref)=", repr(referenceDistribution[testCase].computeDDF(point)))

    PDF = distribution[testCase].computePDF(point)
    print("pdf      =%.6f" % PDF)
    print("pdf (ref)=%.6f" % referenceDistribution[testCase].computePDF(point))

    CDF = distribution[testCase].computeCDF(point)
    print("cdf=%.6f" % CDF)
    CCDF = distribution[testCase].computeComplementaryCDF(point)
    print("ccdf=%.6f" % CCDF)
    print("cdf (ref)=%.6f" % referenceDistribution[testCase].computeCDF(point))

    PDFgr = distribution[testCase].computePDFGradient(point)
    print("pdf gradient      =", repr(cleanPoint(PDFgr)))

    CDFgr = distribution[testCase].computeCDFGradient(point)
    print("cdf gradient      =", repr(cleanPoint(CDFgr)))

    # quantile
    quantile = distribution[testCase].computeQuantile(0.95)
    print("quantile=", repr(quantile))
    print("quantile=", repr(referenceDistribution[testCase].computeQuantile(0.95)))
    print("cdf(quantile)=%.6f" % distribution[testCase].computeCDF(quantile))
    # Get 95% survival function
    inverseSurvival = ot.Point(
        distribution[testCase].computeInverseSurvivalFunction(0.95)
    )
    print("InverseSurvival=", repr(inverseSurvival))
    print(
        "Survival(inverseSurvival)=%.6f"
        % distribution[testCase].computeSurvivalFunction(inverseSurvival)
    )
    print("entropy=%.6f" % distribution[testCase].computeEntropy())

    # Confidence regions
    if distribution[testCase].getDimension() == 1:
        interval, threshold = distribution[
            testCase
        ].computeMinimumVolumeIntervalWithMarginalProbability(0.95)
        print("Minimum volume interval=", interval)
        print("threshold=", ot.Point(1, threshold))
        levelSet, beta = distribution[
            testCase
        ].computeMinimumVolumeLevelSetWithThreshold(0.95)
        print("Minimum volume level set=", levelSet)
        print("beta=", ot.Point(1, beta))
        interval, beta = distribution[
            testCase
        ].computeBilateralConfidenceIntervalWithMarginalProbability(0.95)
        print("Bilateral confidence interval=", interval)
        print("beta=", ot.Point(1, beta))
        interval, beta = distribution[
            testCase
        ].computeUnilateralConfidenceIntervalWithMarginalProbability(0.95, False)
        print("Unilateral confidence interval (lower tail)=", interval)
        print("beta=", ot.Point(1, beta))
        interval, beta = distribution[
            testCase
        ].computeUnilateralConfidenceIntervalWithMarginalProbability(0.95, True)
        print("Unilateral confidence interval (upper tail)=", interval)
        print("beta=", ot.Point(1, beta))

    mean = distribution[testCase].getMean()
    print("mean      =", repr(mean))
    print("mean (ref)=", repr(referenceDistribution[testCase].getMean()))
    standardDeviation = distribution[testCase].getStandardDeviation()
    print("standard deviation      =", repr(standardDeviation))
    print(
        "standard deviation (ref)=",
        repr(referenceDistribution[testCase].getStandardDeviation()),
    )
    skewness = distribution[testCase].getSkewness()
    print("skewness      =", repr(skewness))
    print("skewness (ref)=", repr(referenceDistribution[testCase].getSkewness()))
    kurtosis = distribution[testCase].getKurtosis()
    print("kurtosis      =", repr(kurtosis))
    print("kurtosis (ref)=", repr(referenceDistribution[testCase].getKurtosis()))
    covariance = distribution[testCase].getCovariance()
    print("covariance      =", repr(cleanCovariance(covariance)))
    print(
        "covariance (ref)=",
        repr(cleanCovariance(referenceDistribution[testCase].getCovariance())),
    )
    parameters = distribution[testCase].getParametersCollection()
    print("parameters      =", repr(parameters))
    print(
        "parameters (ref)=",
        repr(referenceDistribution[testCase].getParametersCollection()),
    )
    print("parameter       =", repr(distribution[testCase].getParameter()))
    print("parameter desc  =", repr(distribution[testCase].getParameterDescription()))
    print("marginal 0      =", repr(distribution[testCase].getMarginal(0)))
    print(
        "Standard representative=",
        referenceDistribution[testCase].getStandardRepresentative(),
    )

    mean = distribution[testCase].getMean()
    cpdf = distribution[testCase].computeConditionalPDF(mean[0], [])
    print(f"conditional PDF={cpdf:.6f}")
    scpdf = distribution[testCase].computeSequentialConditionalPDF(mean)
    print(f"sequential conditional PDF={scpdf}")
    ccdf = distribution[testCase].computeConditionalCDF(mean[0], [])
    print(f"conditional CDF={ccdf:.6f}")
    sccdf = distribution[testCase].computeSequentialConditionalCDF(mean)
    print(f"sequential conditional CDF={sccdf}")

    ot.Log.Show(ot.Log.TRACE)
    ot.RandomGenerator.SetSeed(1)
    validation = ott.DistributionValidation(distribution[testCase])
    validation.skipMinimumVolumeLevelSet()  # slow
    validation.run()

# Check simplification
candidates = [
    ot.Normal(1.0, 2.0),
    ot.Uniform(1.0, 2.0),
    ot.Exponential(1.0, 2.0),
    ot.TruncatedDistribution(ot.WeibullMin(), 1.5, 7.8),
    ot.Beta(1.5, 6.3, -1.0, 2.0),
    ot.JointDistribution([ot.Normal()] * 2),
    ot.BlockIndependentDistribution([ot.Normal(2), ot.Normal(2)]),
    ot.BlockIndependentCopula([ot.NormalCopula(2), ot.NormalCopula(2)]),
]
intervals = [
    ot.Interval(-1.0, 4.0),
    ot.Interval(0.2, 2.4),
    ot.Interval(2.5, 65.0),
    ot.Interval(2.5, 6.0),
    ot.Interval(-2.5, 6.0),
    ot.Interval(2),
    ot.Interval(4),
    ot.Interval(4),
]
for i in range(len(candidates)):
    d = ot.TruncatedDistribution(candidates[i], intervals[i])
    print("d=", d, "simplified=", d.getSimplifiedVersion())

# Check that we can set the bounds independently
truncated = ot.TruncatedDistribution()
truncated.setDistribution(ot.Normal(20.0, 7.5))
truncated.setBounds(ot.Interval([0], [80], [True], [False]))
print("after setbounds q@0.9=", truncated.computeQuantile(0.9))
# Test for issue #1190
dist = ot.Normal(6.3e-19, 2.1e-19)
dist = ot.TruncatedDistribution(dist, 4.2e-19, ot.TruncatedDistribution.LOWER)

# non-finite bound bug
bounds = ot.Interval([-2, -3], [2, 3.0], [True, False], [True, True])
dist = ot.TruncatedDistribution(ot.Normal(2), bounds)
print("proba=%.6f" % dist.computeCDF([3.0, -3.0]))

# relative range wrt quantile epsilon issue
unif = ot.Uniform(0.0, 1e12)
trunc = ot.TruncatedDistribution(unif, 0.25, 2.0)
print("q@0.1=", trunc.computeQuantile(0.1))

# n-d CDF inversion
dim = 10
unif = ot.JointDistribution([ot.Uniform(0.0, 1.0)] * dim)
trunc = ot.TruncatedDistribution(unif, ot.Interval([0.0] * dim, [1e-6] * dim))
x = trunc.getRealization()

# marginal of truncated is not truncated marginal
R = ot.CorrelationMatrix(2)
R[1, 0] = 0.8
normal = ot.Normal([0.0] * 2, [1.0] * 2, R)
trunc = ot.TruncatedDistribution(normal, ot.Interval([-0.5] * 2, [1.0] * 2))
marginal0 = trunc.getMarginal(0)
ott.assert_almost_equal(marginal0.getMean(), [0.220527])