1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
|
#! /usr/bin/env python
import openturns as ot
ot.TESTPREAMBLE()
def cleanScalar(inScalar):
if abs(inScalar) < 1.0e-6:
return 0.0
return inScalar
# Default constructor
myDefaultModel = ot.UserDefinedSpectralModel()
print("myDefaultModel = ", myDefaultModel)
# Default dimension parameter to evaluate the model
dimension = 2
inputDimension = 1
# Amplitude values
amplitude = ot.Point(dimension)
# Scale values
scale = ot.Point(inputDimension, 1.0)
# Spatial correlation
spatialCorrelation = ot.CorrelationMatrix(dimension)
for index in range(dimension):
# constant amplitude
amplitude[index] = (index + 1.0) / dimension
if index > 0:
spatialCorrelation[index, index - 1] = 1.0 / index
# Sample a CauchyModel
referenceModel = ot.CauchyModel(scale, amplitude, spatialCorrelation)
size = 5
frequencyGrid = ot.RegularGrid(0.0, 2.0 / size, size)
dspCollection = ot.HermitianMatrixCollection(frequencyGrid.getN())
for i in range(frequencyGrid.getN()):
dspCollection[i] = referenceModel(frequencyGrid.getValue(i))
# Create a UserDefinedSpectralModel
myModel = ot.UserDefinedSpectralModel(frequencyGrid, dspCollection)
print("myModel=", myModel)
# Sample the UserDefinedSpectralModel
samplingGrid = ot.RegularGrid(-0.4, 1.0 / 16, 5 * size)
for i in range(samplingGrid.getN()):
frequency = samplingGrid.getValue(i)
print("frequency= %g myModel=" % cleanScalar(frequency))
print(myModel(frequency).clean(1e-6), ", referenceModel=")
print(referenceModel(frequency).clean(1e-6))
|