File: t_UserDefinedSpectralModel_std.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (54 lines) | stat: -rwxr-xr-x 1,534 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
#! /usr/bin/env python

import openturns as ot

ot.TESTPREAMBLE()


def cleanScalar(inScalar):
    if abs(inScalar) < 1.0e-6:
        return 0.0
    return inScalar


# Default constructor
myDefaultModel = ot.UserDefinedSpectralModel()
print("myDefaultModel = ", myDefaultModel)

# Default dimension parameter to evaluate the model
dimension = 2
inputDimension = 1

# Amplitude values
amplitude = ot.Point(dimension)
# Scale values
scale = ot.Point(inputDimension, 1.0)
# Spatial correlation
spatialCorrelation = ot.CorrelationMatrix(dimension)
for index in range(dimension):
    # constant amplitude
    amplitude[index] = (index + 1.0) / dimension
    if index > 0:
        spatialCorrelation[index, index - 1] = 1.0 / index

# Sample a CauchyModel
referenceModel = ot.CauchyModel(scale, amplitude, spatialCorrelation)

size = 5
frequencyGrid = ot.RegularGrid(0.0, 2.0 / size, size)
dspCollection = ot.HermitianMatrixCollection(frequencyGrid.getN())
for i in range(frequencyGrid.getN()):
    dspCollection[i] = referenceModel(frequencyGrid.getValue(i))

# Create a UserDefinedSpectralModel
myModel = ot.UserDefinedSpectralModel(frequencyGrid, dspCollection)
print("myModel=", myModel)

# Sample the UserDefinedSpectralModel
samplingGrid = ot.RegularGrid(-0.4, 1.0 / 16, 5 * size)

for i in range(samplingGrid.getN()):
    frequency = samplingGrid.getValue(i)
    print("frequency= %g myModel=" % cleanScalar(frequency))
    print(myModel(frequency).clean(1e-6), ", referenceModel=")
    print(referenceModel(frequency).clean(1e-6))