1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
|
#! /usr/bin/env python
import openturns as ot
ot.TESTPREAMBLE()
# Default constructor
myDefaultModel = ot.UserDefinedStationaryCovarianceModel()
print("myDefaultModel = ", myDefaultModel)
# Default dimension parameter to evaluate the model
dimension = 1
inputDimension = 1
# Amplitude values
amplitude = ot.Point(dimension)
# Scale values
scale = ot.Point(dimension)
# Spatial correclation
spatialCorrelation = ot.CorrelationMatrix(dimension)
for index in range(dimension):
# constant amplitude
amplitude[index] = 2.0
scale[index] = (index + 1.0) / dimension
# Sample a ExponentialModel
referenceModel = ot.ExponentialModel(scale, amplitude, spatialCorrelation)
print("reference model=", referenceModel)
size = 100
timeGrid = ot.RegularGrid(0.0, 0.1, size)
covarianceCollection = ot.SquareMatrixCollection(size)
for i in range(timeGrid.getN()):
t = timeGrid.getValue(i)
covarianceCollection[i] = referenceModel(t)
# Create a UserDefinedStationaryCovarianceModel
myModel = ot.UserDefinedStationaryCovarianceModel(timeGrid, covarianceCollection)
print("myModel=", myModel)
for i in range(timeGrid.getN()):
t = timeGrid.getValue(i)
# We look for cov(s,t) ==> when adding to the collection, we compute cov(t,s)
# Because of symmetry, we check the right index computation
print(
"t= %.6g" % t,
"myModel = %.6g" % myModel(t)[0, 0],
", referenceModel= %.6g" % referenceModel(t)[0, 0],
)
# Test the drawing method as a nonstationary model, in the covariance range
graph = myModel.draw(0, 0, -2.0, 2.0, 21, True, False)
print(graph)
# Test the drawing method as a nonstationary model, in the correlation
# range
graph = myModel.draw(0, 0, -2.0, 2.0, 21, True, True)
print(graph)
|