File: t_VertexValueFunction_std.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (28 lines) | stat: -rwxr-xr-x 1,067 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
#! /usr/bin/env python

import openturns as ot

ot.TESTPREAMBLE()


myFunc = ot.SymbolicFunction(["t", "x"], ["x + t^2"])
tg = ot.RegularGrid(0.0, 0.2, 6)
myTemporalFunc = ot.VertexValueFunction(myFunc, tg)

print("myTemporalFunc=", myTemporalFunc)
# Get the input and output description
print("myTemporalFunc input description=", myTemporalFunc.getInputDescription())
print("myTemporalFunc output description=", myTemporalFunc.getOutputDescription())
# Get the input and output dimension, based on description
print("myTemporalFunc input dimension=", myTemporalFunc.getInputDimension())
print("myTemporalFunc output dimension=", myTemporalFunc.getOutputDimension())
# Create a TimeSeries
data = ot.Sample(tg.getN(), myFunc.getInputDimension() - 1)
for i in range(data.getSize()):
    for j in range(data.getDimension()):
        data[i, j] = i * data.getDimension() + j
ts = ot.TimeSeries(tg, data)
print("input time series=", ts)
print("output time series=", myTemporalFunc(ts))
# Get the number of calls
print("called ", myTemporalFunc.getCallsNumber(), " times")