1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
|
#!/usr/bin/env python
import openturns as ot
import openturns.testing as ott
ot.TESTPREAMBLE()
# QQPlot tests
size = 100
normal = ot.Normal(1)
sample = normal.getSample(size)
sample2 = ot.Gamma(3.0, 4.0, 0.0).getSample(size)
twoSamplesQQPlot = ot.VisualTest.DrawQQplot(sample, sample2)
print("twoSamplesQQPlot = ", twoSamplesQQPlot)
sampleDistributionQQPlot = ot.VisualTest.DrawQQplot(sample, normal)
print("sampleDistributionQQPlot = ", sampleDistributionQQPlot)
dist = ot.Geometric()
qq_plot = ot.VisualTest.DrawQQplot(dist.getSample(size), dist)
print("discrete QQPlot = ", qq_plot)
sample2 = normal.getSample(size)
twoSamplesPPPlot = ot.VisualTest.DrawPPplot(sample, sample2)
print("twoSamplesPPPlot = ", twoSamplesPPPlot)
sampleDistributionPPplot = ot.VisualTest.DrawPPplot(sample, normal)
print("sampleDistributionPPplot = ", sampleDistributionPPplot)
# HenryLine test
size = 100
normal = ot.Normal(1)
sample = normal.getSample(size)
henryPlot = ot.VisualTest.DrawHenryLine(sample)
print("HenryPlot = ", henryPlot)
# LinearModel tests
dimension = 2
R = ot.CorrelationMatrix(dimension)
R[0, 1] = 0.8
distribution = ot.Normal(ot.Point(dimension, 3.0), ot.Point(dimension, 2.0), R)
size = 100
sample2D = distribution.getSample(size)
firstSample = ot.Sample(size, 1)
secondSample = ot.Sample(size, 1)
for i in range(size):
firstSample[i] = ot.Point(1, sample2D[i, 0])
secondSample[i] = ot.Point(1, sample2D[i, 1])
lmtest = ot.LinearModelAlgorithm(firstSample, secondSample).getResult()
drawLinearModelVTest = ot.VisualTest.DrawLinearModel(lmtest)
print("LinearModelV = ", drawLinearModelVTest)
drawLinearModelResidualTest = ot.VisualTest.DrawLinearModelResidual(lmtest)
print("LinearModelR = ", drawLinearModelResidualTest)
# Parallel coordinates tests
size = 100
inputDimension = 6
inputSample = ot.Normal(inputDimension).getSample(size)
inputVar = ["X" + str(i) for i in range(inputDimension)]
formula = ot.Description(1)
expression = ""
for i in range(inputDimension):
if i > 0:
expression += "+"
expression += "cos(" + str(i + 1) + "*" + inputVar[i] + ")"
formula[0] = expression
model = ot.SymbolicFunction(inputVar, formula)
outputSample = model(inputSample)
parallelCoordinatesValue = ot.VisualTest.DrawParallelCoordinates(
inputSample, outputSample, 2.5, 3.0, "red", False
)
print("parallelCoordinatesValue = ", parallelCoordinatesValue)
parallelCoordinatesQuantile = ot.VisualTest.DrawParallelCoordinates(
inputSample, outputSample, 0.7, 0.9, "red", False
)
print("parallelCoordinatesQuantile = ", parallelCoordinatesQuantile)
# KendallPlot tests
size = 100
copula1 = ot.FrankCopula(1.5)
copula2 = ot.GumbelCopula(4.5)
sample1 = copula1.getSample(size)
sample1.setName("data 1")
sample2 = copula2.getSample(size)
sample2.setName("data 2")
kendallPlot1 = ot.VisualTest.DrawKendallPlot(sample1, copula2)
print("KendallPlot1 = ", kendallPlot1)
kendallPlot2 = ot.VisualTest.DrawKendallPlot(sample2, sample1)
print("KendallPlot2 = ", kendallPlot2)
# Clouds
sample = ot.Normal(4).getSample(200)
clouds = ot.VisualTest.DrawPairs(sample)
print("Clouds = ", clouds)
distribution = ot.JointDistribution(
[ot.HistogramFactory().build(sample.getMarginal(i)) for i in range(4)]
)
cloudsMarginals = ot.VisualTest.DrawPairsMarginals(sample, distribution)
print("CloudsMarginals = ", cloudsMarginals)
# dependence functions
copula = ot.GumbelCopula()
data = copula.getSample(100000)
graph1 = ot.VisualTest.DrawUpperTailDependenceFunction(data)
graph2 = ot.VisualTest.DrawUpperExtremalDependenceFunction(data)
graph3 = ot.VisualTest.DrawLowerTailDependenceFunction(data)
graph4 = ot.VisualTest.DrawLowerExtremalDependenceFunction(data)
# check vs theoretical value
theta = copula.getTheta()
ref = 2.0 - 2.0 ** (1.0 / theta)
value = graph1.getDrawable(0).getData()[-4, 1]
ott.assert_almost_equal(value, ref, 1e-2, 1e-3)
# Draw points inside and outside a domain
domain = ot.Domain(ot.Interval([-2.0, 0.0, -1], [2.0, 3.0, 1.0]))
U = ot.Uniform(-3, 3)
dist = ot.JointDistribution([U, U, U])
grid = ot.VisualTest.DrawInsideOutside(domain, dist.getSample(30))
print(grid)
|