File: t_VonMises_std.expout

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (43 lines) | stat: -rw-r--r-- 1,331 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
Distribution  VonMises(mu = -0.5, kappa=1.5)
Elliptical =  False
Continuous =  True
oneRealization= [0.492446]
Point=  [1]
ddf     = [-0.160799]
log pdf= -2.23055863162
pdf     =0.107468
cdf= 0.927414932933
ccdf= 0.0725850670669
survival= 0.0725850670669
characteristic function=(0.523156, -0.285801)
log characteristic function=(-0.517291, -0.5)
pdf gradient     = [0.160799,-0.0564635]
cdf gradient     = [-0.107468,0.0747113]
quantile= [1.25235]
cdf(quantile)= 0.95
InverseSurvival= class=Point name=Unnamed dimension=1 values=[-2.25235]
Survival(inverseSurvival)=0.950000
entropy=1.442465
Minimum volume interval= [-2.71399, 1.71399]
threshold= [0.95]
Minimum volume level set= {x | f(x) <= 3.2363} with f=
MinimumVolumeLevelSetEvaluation(VonMises(mu = -0.5, kappa=1.5))
beta= [0.0393091]
Bilateral confidence interval= [-2.71399, 1.71399]
beta= [0.95]
Unilateral confidence interval (lower tail)= [-3.64159, 1.25235]
beta= [0.95]
Unilateral confidence interval (upper tail)= [-2.25235, 2.64159]
beta= [0.95]
mean= [-0.5]
standard deviation= [1.04438]
skewness= [1.94923e-15]
kurtosis= [3.44545]
covariance= [[ 1.09073 ]]
correlation= [[ 1 ]]
spearman= [[ 1 ]]
kendall= [[ 1 ]]
parameters= [[mu : -0.5, kappa : 1.5]]
Standard representative= VonMises(mu = -0.5, kappa=1.5)
Circular mean= -0.5
Circular variance= 0.403866761169