File: t_WeibullMin_std.expout

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (34 lines) | stat: -rw-r--r-- 1,801 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
Distribution  class=WeibullMin name=WeibullMin dimension=1 beta=2 alpha=1.5 gamma=-0.5
Distribution  WeibullMin(beta = 2, alpha = 1.5, gamma = -0.5)
Elliptical =  False
Continuous =  True
oneRealization= class=Point name=Unnamed dimension=1 values=[1.49188]
Point=  class=Point name=Unnamed dimension=1 values=[1]
ddf     = class=Point name=Unnamed dimension=1 values=[-0.107263]
log pdf=-1.081042
pdf     =0.339242
cdf=0.477703
pdf gradient     = class=Point name=Unnamed dimension=3 values=[-0.0891733,0.191956,0.107263]
cdf gradient     = class=Point name=Unnamed dimension=3 values=[-0.254431,-0.0975938,-0.339242]
quantile= class=Point name=Unnamed dimension=1 values=[3.65622]
cdf(quantile)=0.950000
InverseSurvival= class=Point name=Unnamed dimension=1 values=[-0.223897]
Survival(inverseSurvival)=0.950000
entropy=1.480087
threshold= [0.95]
Minimum volume level set= {x | f(x) <= 2.92424} with f=
MinimumVolumeLevelSetEvaluation(WeibullMin(beta = 2, alpha = 1.5, gamma = -0.5))
beta= [0.0537054]
Bilateral confidence interval= [-0.327556, 4.27485]
beta= [0.95]
Unilateral confidence interval (lower tail)= [-0.5, 3.65622]
beta= [0.95]
Unilateral confidence interval (upper tail)= [-0.223897, 19.7578]
beta= [0.95]
mean= class=Point name=Unnamed dimension=1 values=[1.30549]
standard deviation= class=Point name=Unnamed dimension=1 values=[1.22587]
skewness= class=Point name=Unnamed dimension=1 values=[1.07199]
kurtosis= class=Point name=Unnamed dimension=1 values=[4.3904]
covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1.50276]
parameters= [class=PointWithDescription name=X0 dimension=3 description=[beta,alpha,gamma] values=[2,1.5,-0.5]]
Standard representative= WeibullMin(beta = 1, alpha = 1.5, gamma = 0)