File: t_WelchFactory_std.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (61 lines) | stat: -rwxr-xr-x 2,069 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
#! /usr/bin/env python

import openturns as ot

ot.TESTPREAMBLE()

# Dimension of the input model
# Size of the TimeGrid
size = 64
dimension = 1
timeGrid = ot.RegularGrid(0.0, 0.1, size)
amplitude = ot.Point(dimension, 2.0)
scale = ot.Point(dimension, 1.0)
model = ot.CauchyModel(scale, amplitude)
myProcess = ot.SpectralGaussianProcess(model, timeGrid)

# Create a Process sample
N = 100
sample = ot.ProcessSample(myProcess.getSample(N))

# Filtering Windows
myFactory = ot.WelchFactory()

# Build a UserDefinedSpectralModel using the Wellch method
mySpectralModel = myFactory.buildAsUserDefinedSpectralModel(sample)

# Get the frequency grid of the model
myFrequencyGrid = mySpectralModel.getFrequencyGrid()
for i in range(dimension):
    for j in range(dimension):
        print("Spectre ", i, "-", j)
        for k in range(myFrequencyGrid.getN()):
            frequency = myFrequencyGrid.getStart() + k * myFrequencyGrid.getStep()
            estimatedValue = (mySpectralModel(frequency)[i, j]).real
            modelValue = (model(frequency)[i, j]).real
            print(
                "Frequency =  %.6f" % frequency,
                ", evaluation = %.8f" % estimatedValue,
                " model = %.8f" % modelValue,
            )

# Create a Time Series
timeSeries = myProcess.getRealization()

# Build a UserDefinedSpectralModel using the Wellch method
mySpectralModel2 = myFactory.buildAsUserDefinedSpectralModel(timeSeries)

# Get the frequency grid of the model
myFrequencyGrid = mySpectralModel2.getFrequencyGrid()
for i in range(dimension):
    for j in range(dimension):
        print("Spectre ", i, "-", j)
        for k in range(myFrequencyGrid.getN()):
            frequency = myFrequencyGrid.getStart() + k * myFrequencyGrid.getStep()
            estimatedValue = (mySpectralModel2(frequency)[i, j]).real
            modelValue = (model(frequency)[i, j]).real
            print(
                "Frequency =  %.6f" % frequency,
                ", evaluation = %.8f" % estimatedValue,
                " model = %.8f" % modelValue,
            )