File: t_Wishart_std.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (108 lines) | stat: -rwxr-xr-x 3,587 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
#! /usr/bin/env python

import openturns as ot
import openturns.testing as ott

ot.TESTPREAMBLE()


# Instantiate one distribution object
distribution = ot.Wishart(ot.CovarianceMatrix(1), 3.0)
print("Distribution ", repr(distribution))
print("Distribution ", distribution)

# Get mean and covariance
print("Mean= ", repr(distribution.getMean()))
print("Covariance= ", repr(distribution.getCovariance()))

# Is this distribution elliptical ?
print("Elliptical = ", distribution.isElliptical())

# Test for realization of distribution
oneRealization = distribution.getRealization()
print("oneRealization=", repr(oneRealization))

# Define a point
point = ot.Point(distribution.getDimension(), 9.1)
print("Point= ", repr(point))

# derivative of PDF with regards its arguments
DDF = distribution.computeDDF(point)
print("ddf     =", repr(DDF))

# PDF value
LPDF = distribution.computeLogPDF(point)
print("log pdf=%.6f" % LPDF)
PDF = distribution.computePDF(point)
print("pdf     =%.6f" % PDF)

# derivative of the PDF with regards the parameters of the distribution
CDF = distribution.computeCDF(point)
print("cdf=%.6f" % CDF)
CCDF = distribution.computeComplementaryCDF(point)
print("ccdf=%.6f" % CCDF)
PDFgr = distribution.computePDFGradient(point)
print("pdf gradient     =", repr(PDFgr))

# derivative of the PDF with regards the parameters of the distribution
CDFgr = distribution.computeCDFGradient(point)
print("cdf gradient     =", repr(CDFgr))

# quantile
quantile = distribution.computeQuantile(0.95)
print("quantile=", repr(quantile))
print("cdf(quantile)=%.6f" % distribution.computeCDF(quantile))
# Get 95% survival function
inverseSurvival = ot.Point(distribution.computeInverseSurvivalFunction(0.95))
print("InverseSurvival=", repr(inverseSurvival))
print(
    "Survival(inverseSurvival)=%.6f"
    % distribution.computeSurvivalFunction(inverseSurvival)
)
print("entropy=%.6f" % distribution.computeEntropy())

# Confidence regions
interval, threshold = distribution.computeMinimumVolumeIntervalWithMarginalProbability(
    0.95
)
print("Minimum volume interval=", interval)
print("threshold=", ot.Point(1, threshold))
levelSet, beta = distribution.computeMinimumVolumeLevelSetWithThreshold(0.95)
print("Minimum volume level set=", levelSet)
print("beta=", ot.Point(1, beta))
interval, beta = distribution.computeBilateralConfidenceIntervalWithMarginalProbability(
    0.95
)
print("Bilateral confidence interval=", interval)
print("beta=", ot.Point(1, beta))
(
    interval,
    beta,
) = distribution.computeUnilateralConfidenceIntervalWithMarginalProbability(0.95, False)
print("Unilateral confidence interval (lower tail)=", interval)
print("beta=", ot.Point(1, beta))
(
    interval,
    beta,
) = distribution.computeUnilateralConfidenceIntervalWithMarginalProbability(0.95, True)
print("Unilateral confidence interval (upper tail)=", interval)
print("beta=", ot.Point(1, beta))

mean = distribution.getMean()
print("mean=", repr(mean))
standardDeviation = distribution.getStandardDeviation()
print("standard deviation=", repr(standardDeviation))
skewness = distribution.getSkewness()
print("skewness=", repr(skewness))
kurtosis = distribution.getKurtosis()
print("kurtosis=", repr(kurtosis))
covariance = distribution.getCovariance()
print("covariance=", repr(covariance))
parameters = distribution.getParametersCollection()
print("parameters=", repr(parameters))
print("Standard representative=", distribution.getStandardRepresentative())

ot.Log.Show(ot.Log.TRACE)
ot.RandomGenerator.SetSeed(2)
validation = ott.DistributionValidation(distribution)
validation.run()