1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
|
"""
Analyse the central tendency of a cantilever beam
=================================================
"""
# %%
# In this example we perform a central tendency analysis of a random variable Y using the various methods available. We consider the :ref:`cantilever beam <use-case-cantilever-beam>` example and show how to use the `TaylorExpansionMoments` and `ExpectationSimulationAlgorithm` classes.
# %%
from openturns.usecases import cantilever_beam
import openturns as ot
import openturns.viewer as viewer
from matplotlib import pylab as plt
ot.Log.Show(ot.Log.NONE)
# %%
# We first load the data class from the usecases module :
cb = cantilever_beam.CantileverBeam()
# %%
# We want to create the random variable of interest Y=g(X) where :math:`g(.)` is the physical model and :math:`X` is the input vectors. For this example we consider independent marginals.
# %%
# We set a `mean` vector and a unitary standard deviation :
dim = cb.dim
mean = [50.0, 1.0, 10.0, 5.0]
sigma = [1.0] * dim
R = ot.IdentityMatrix(dim)
# %%
# We create the input parameters distribution and make a random vector :
distribution = ot.Normal(mean, sigma, R)
X = ot.RandomVector(distribution)
X.setDescription(["E", "F", "L", "I"])
# %%
# `f` is the cantilever beam model :
f = cb.model
# %%
# The random variable of interest Y is then
Y = ot.CompositeRandomVector(f, X)
Y.setDescription("Y")
# %%
# Taylor expansion
# ----------------
# %%
# Perform Taylor approximation to get the expected value of Y and the importance factors.
# %%
taylor = ot.TaylorExpansionMoments(Y)
taylor_mean_fo = taylor.getMeanFirstOrder()
taylor_mean_so = taylor.getMeanSecondOrder()
taylor_cov = taylor.getCovariance()
taylor_if = taylor.getImportanceFactors()
print("model evaluation calls number=", f.getGradientCallsNumber())
print("model gradient calls number=", f.getGradientCallsNumber())
print("model hessian calls number=", f.getHessianCallsNumber())
print("taylor mean first order=", taylor_mean_fo)
print("taylor variance=", taylor_cov)
print("taylor importance factors=", taylor_if)
# %%
graph = taylor.drawImportanceFactors()
view = viewer.View(graph)
# %%
# We see that, at first order, the variable :math:`F` explains 88.5% of the variance of the output :math:`Y`. On the other hand, the variable :math:`E` is not significant in the variance of the output: at first order, the random variable :math:`E` could be replaced by a constant with no change to the output variance.
# %%
# Monte-Carlo simulation
# ----------------------
# %%
# Perform a Monte Carlo simulation of Y to estimate its mean.
# %%
algo = ot.ExpectationSimulationAlgorithm(Y)
algo.setMaximumOuterSampling(1000)
algo.setCoefficientOfVariationCriterionType("NONE")
algo.run()
print("model evaluation calls number=", f.getEvaluationCallsNumber())
expectation_result = algo.getResult()
expectation_mean = expectation_result.getExpectationEstimate()
print(
"monte carlo mean=",
expectation_mean,
"var=",
expectation_result.getVarianceEstimate(),
)
# %%
# Central dispersion analysis based on a sample
# ---------------------------------------------
# %%
# Directly compute statistical moments based on a sample of Y. Sometimes the probabilistic model is not available and the study needs to start from the data.
# %%
Y_s = Y.getSample(1000)
y_mean = Y_s.computeMean()
y_stddev = Y_s.computeStandardDeviation()
y_quantile_95p = Y_s.computeQuantilePerComponent(0.95)
print("mean=", y_mean, "stddev=", y_stddev, "quantile@95%", y_quantile_95p)
# %%
graph = ot.KernelSmoothing().build(Y_s).drawPDF()
graph.setTitle("Kernel smoothing approximation of the output distribution")
view = viewer.View(graph)
plt.show()
|