File: t_CompoundDistribution_std.cxx

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (193 lines) | stat: -rw-r--r-- 8,148 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
//                                               -*- C++ -*-
/**
 *  @brief The test file of class CompoundDistribution for standard methods
 *
 *  Copyright 2005-2025 Airbus-EDF-IMACS-ONERA-Phimeca
 *
 *  This library is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU Lesser General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public License
 *  along with this library.  If not, see <http://www.gnu.org/licenses/>.
 *
 */
#include "openturns/OT.hxx"
#include "openturns/OTtestcode.hxx"

using namespace OT;
using namespace OT::Test;

int main(int, char *[])
{
  TESTPREAMBLE;
  OStream fullprint(std::cout);
  try
  {

    // Test basic functionnalities
    //checkClassWithClassName<TestObject>();

    // Create a collection of distribution
    {
      Collection< Distribution > coll2;
      coll2.add(Dirac(1));
      coll2.add(Dirac(2));
      coll2.add(Bernoulli(0.7));
      coll2.add(Uniform(3.0, 4.0));
      JointDistribution d2(coll2);
      Collection< Distribution > coll1;
      coll1.add(Uniform());
      coll1.add(Uniform());
      JointDistribution d1(coll1);
      CompoundDistribution distribution(d1, d2);
      UnsignedInteger dim = distribution.getDimension();
      fullprint << "distribution=" << distribution << std::endl;
      fullprint << "Parameters " << distribution.getParametersCollection() << std::endl;
      fullprint << "Mean " << distribution.getMean() << std::endl;
      CovarianceMatrix cov(distribution.getCovariance());
      CovarianceMatrix covRef(2);
      covRef(0, 0) = 0.0833333;
      covRef(1, 1) = 0.751111;
      assert_almost_equal(cov, covRef);
      // Is this distribution an elliptical distribution?
      fullprint << "Elliptical distribution= " << (distribution.isElliptical() ? "true" : "false") << std::endl;

      // Has this distribution an elliptical copula?
      fullprint << "Elliptical copula= " << (distribution.hasEllipticalCopula() ? "true" : "false") << std::endl;

      // Has this distribution an independent copula?
      fullprint << "Independent copula= " << (distribution.hasIndependentCopula() ? "true" : "false") << std::endl;

      // Test for realization of distribution
      Point oneRealization = distribution.getRealization();
      fullprint << "oneRealization=" << oneRealization << std::endl;

      // Test for sampling
      UnsignedInteger size = 10;
      Sample oneSample = distribution.getSample( size );
      fullprint << "oneSample=" << oneSample << std::endl;

      // Test for sampling
      size = 10000;
      Sample anotherSample = distribution.getSample( size );
      fullprint << "anotherSample mean=" << anotherSample.computeMean() << std::endl;
      fullprint << "anotherSample covariance=" << anotherSample.computeCovariance() << std::endl;

      // Define a point
      Point zero(dim, 0.0);

      // Show PDF and CDF of zero point
      Scalar zeroPDF = distribution.computePDF( zero );
      Scalar zeroCDF = distribution.computeCDF( zero );
      fullprint << "Zero point= " << zero
                << " pdf=" << zeroPDF
                << " cdf=" << zeroCDF
                << std::endl;
      // Get 95% quantile
      Point quantile = distribution.computeQuantile( 0.95 );
      fullprint << "Quantile=" << quantile << std::endl;
      fullprint << "CDF(quantile)=" << distribution.computeCDF(quantile) << std::endl;
      // fullprint << "entropy=" << distribution.computeEntropy() << std::endl;
      // fullprint << "entropy (MC)=" << -distribution.computeLogPDF(distribution.getSample(1000000)).computeMean()[0] << std::endl;
    }
    // 1D tests
    Normal conditionedDistribution;
    Collection< Distribution > conditioningDistributionCollection;
    // First conditioning distribution: continuous/continuous
    {
      Collection< Distribution > atoms;
      atoms.add( Uniform( 0.0, 1.0) );
      atoms.add( Uniform( 1.0, 2.0) );
      conditioningDistributionCollection.add(JointDistribution(atoms));
    }
    // Second conditioning distribution: discrete/continuous
    {
      Collection< Distribution > atoms;
      atoms.add( Binomial(3, 0.5) );
      atoms.add( Uniform( 1.0, 2.0) );
      conditioningDistributionCollection.add(JointDistribution(atoms));
    }
    // Third conditioning distribution: dirac/continuous
    {
      Collection< Distribution > atoms;
      atoms.add( Dirac(0.0) );
      atoms.add( Uniform( 1.0, 2.0) );
      conditioningDistributionCollection.add(JointDistribution(atoms));
    }
    for (UnsignedInteger i = 0; i < conditioningDistributionCollection.getSize(); ++i)
    {
      fullprint << "conditioning distribution=" << conditioningDistributionCollection[i].__str__() << std::endl;
      CompoundDistribution distribution(conditionedDistribution, conditioningDistributionCollection[i]);
      UnsignedInteger dim = distribution.getDimension();
      fullprint << "Distribution " << distribution << std::endl;
      std::cout << "Distribution " << distribution << std::endl;
      fullprint << "Parameters " << distribution.getParametersCollection() << std::endl;
      fullprint << "Mean " << distribution.getMean() << std::endl;
      fullprint << "Covariance " << distribution.getCovariance() << std::endl;
      // Is this distribution an elliptical distribution?
      fullprint << "Elliptical distribution= " << (distribution.isElliptical() ? "true" : "false") << std::endl;

      // Has this distribution an elliptical copula?
      fullprint << "Elliptical copula= " << (distribution.hasEllipticalCopula() ? "true" : "false") << std::endl;

      // Has this distribution an independent copula?
      fullprint << "Independent copula= " << (distribution.hasIndependentCopula() ? "true" : "false") << std::endl;

      // Test for realization of distribution
      Point oneRealization = distribution.getRealization();
      fullprint << "oneRealization=" << oneRealization << std::endl;

      // Test for sampling
      UnsignedInteger size = 10;
      Sample oneSample = distribution.getSample( size );
      fullprint << "oneSample=" << oneSample << std::endl;

      // Test for sampling
      size = 10000;
      Sample anotherSample = distribution.getSample( size );
      fullprint << "anotherSample mean=" << anotherSample.computeMean() << std::endl;
      fullprint << "anotherSample covariance=" << anotherSample.computeCovariance() << std::endl;

      // Define a point
      Point zero(dim, 0.0);

      // Show PDF and CDF of zero point
      Scalar zeroPDF = distribution.computePDF( zero );
      Scalar zeroCDF = distribution.computeCDF( zero );
      fullprint << "Zero point= " << zero
                << " pdf=" << zeroPDF
                << " cdf=" << zeroCDF
                << std::endl;
      // Get 95% quantile
      Point quantile = distribution.computeQuantile( 0.95 );
      fullprint << "Quantile=" << quantile << std::endl;
      fullprint << "CDF(quantile)=" << distribution.computeCDF(quantile) << std::endl;
      //fullprint << "entropy=" << distribution.computeEntropy() << std::endl;
      // Extract the marginals
      for (UnsignedInteger j = 0; j < dim; ++j)
      {
        Distribution margin(distribution.getMarginal(j));
        fullprint << "margin=" << margin << std::endl;
        fullprint << "margin PDF=" << margin.computePDF(Point(1)) << std::endl;
        fullprint << "margin CDF=" << margin.computeCDF(Point(1)) << std::endl;
        fullprint << "margin quantile=" << margin.computeQuantile(0.95) << std::endl;
        fullprint << "margin realization=" << margin.getRealization() << std::endl;
      }
    }
  }
  catch (TestFailed & ex)
  {
    std::cerr << ex << std::endl;
    return ExitCode::Error;
  }


  return ExitCode::Success;
}