1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
|
// -*- C++ -*-
/**
* @brief The test file of class CompoundDistribution for standard methods
*
* Copyright 2005-2025 Airbus-EDF-IMACS-ONERA-Phimeca
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "openturns/OT.hxx"
#include "openturns/OTtestcode.hxx"
using namespace OT;
using namespace OT::Test;
int main(int, char *[])
{
TESTPREAMBLE;
OStream fullprint(std::cout);
try
{
// Test basic functionnalities
//checkClassWithClassName<TestObject>();
// Create a collection of distribution
{
Collection< Distribution > coll2;
coll2.add(Dirac(1));
coll2.add(Dirac(2));
coll2.add(Bernoulli(0.7));
coll2.add(Uniform(3.0, 4.0));
JointDistribution d2(coll2);
Collection< Distribution > coll1;
coll1.add(Uniform());
coll1.add(Uniform());
JointDistribution d1(coll1);
CompoundDistribution distribution(d1, d2);
UnsignedInteger dim = distribution.getDimension();
fullprint << "distribution=" << distribution << std::endl;
fullprint << "Parameters " << distribution.getParametersCollection() << std::endl;
fullprint << "Mean " << distribution.getMean() << std::endl;
CovarianceMatrix cov(distribution.getCovariance());
CovarianceMatrix covRef(2);
covRef(0, 0) = 0.0833333;
covRef(1, 1) = 0.751111;
assert_almost_equal(cov, covRef);
// Is this distribution an elliptical distribution?
fullprint << "Elliptical distribution= " << (distribution.isElliptical() ? "true" : "false") << std::endl;
// Has this distribution an elliptical copula?
fullprint << "Elliptical copula= " << (distribution.hasEllipticalCopula() ? "true" : "false") << std::endl;
// Has this distribution an independent copula?
fullprint << "Independent copula= " << (distribution.hasIndependentCopula() ? "true" : "false") << std::endl;
// Test for realization of distribution
Point oneRealization = distribution.getRealization();
fullprint << "oneRealization=" << oneRealization << std::endl;
// Test for sampling
UnsignedInteger size = 10;
Sample oneSample = distribution.getSample( size );
fullprint << "oneSample=" << oneSample << std::endl;
// Test for sampling
size = 10000;
Sample anotherSample = distribution.getSample( size );
fullprint << "anotherSample mean=" << anotherSample.computeMean() << std::endl;
fullprint << "anotherSample covariance=" << anotherSample.computeCovariance() << std::endl;
// Define a point
Point zero(dim, 0.0);
// Show PDF and CDF of zero point
Scalar zeroPDF = distribution.computePDF( zero );
Scalar zeroCDF = distribution.computeCDF( zero );
fullprint << "Zero point= " << zero
<< " pdf=" << zeroPDF
<< " cdf=" << zeroCDF
<< std::endl;
// Get 95% quantile
Point quantile = distribution.computeQuantile( 0.95 );
fullprint << "Quantile=" << quantile << std::endl;
fullprint << "CDF(quantile)=" << distribution.computeCDF(quantile) << std::endl;
// fullprint << "entropy=" << distribution.computeEntropy() << std::endl;
// fullprint << "entropy (MC)=" << -distribution.computeLogPDF(distribution.getSample(1000000)).computeMean()[0] << std::endl;
}
// 1D tests
Normal conditionedDistribution;
Collection< Distribution > conditioningDistributionCollection;
// First conditioning distribution: continuous/continuous
{
Collection< Distribution > atoms;
atoms.add( Uniform( 0.0, 1.0) );
atoms.add( Uniform( 1.0, 2.0) );
conditioningDistributionCollection.add(JointDistribution(atoms));
}
// Second conditioning distribution: discrete/continuous
{
Collection< Distribution > atoms;
atoms.add( Binomial(3, 0.5) );
atoms.add( Uniform( 1.0, 2.0) );
conditioningDistributionCollection.add(JointDistribution(atoms));
}
// Third conditioning distribution: dirac/continuous
{
Collection< Distribution > atoms;
atoms.add( Dirac(0.0) );
atoms.add( Uniform( 1.0, 2.0) );
conditioningDistributionCollection.add(JointDistribution(atoms));
}
for (UnsignedInteger i = 0; i < conditioningDistributionCollection.getSize(); ++i)
{
fullprint << "conditioning distribution=" << conditioningDistributionCollection[i].__str__() << std::endl;
CompoundDistribution distribution(conditionedDistribution, conditioningDistributionCollection[i]);
UnsignedInteger dim = distribution.getDimension();
fullprint << "Distribution " << distribution << std::endl;
std::cout << "Distribution " << distribution << std::endl;
fullprint << "Parameters " << distribution.getParametersCollection() << std::endl;
fullprint << "Mean " << distribution.getMean() << std::endl;
fullprint << "Covariance " << distribution.getCovariance() << std::endl;
// Is this distribution an elliptical distribution?
fullprint << "Elliptical distribution= " << (distribution.isElliptical() ? "true" : "false") << std::endl;
// Has this distribution an elliptical copula?
fullprint << "Elliptical copula= " << (distribution.hasEllipticalCopula() ? "true" : "false") << std::endl;
// Has this distribution an independent copula?
fullprint << "Independent copula= " << (distribution.hasIndependentCopula() ? "true" : "false") << std::endl;
// Test for realization of distribution
Point oneRealization = distribution.getRealization();
fullprint << "oneRealization=" << oneRealization << std::endl;
// Test for sampling
UnsignedInteger size = 10;
Sample oneSample = distribution.getSample( size );
fullprint << "oneSample=" << oneSample << std::endl;
// Test for sampling
size = 10000;
Sample anotherSample = distribution.getSample( size );
fullprint << "anotherSample mean=" << anotherSample.computeMean() << std::endl;
fullprint << "anotherSample covariance=" << anotherSample.computeCovariance() << std::endl;
// Define a point
Point zero(dim, 0.0);
// Show PDF and CDF of zero point
Scalar zeroPDF = distribution.computePDF( zero );
Scalar zeroCDF = distribution.computeCDF( zero );
fullprint << "Zero point= " << zero
<< " pdf=" << zeroPDF
<< " cdf=" << zeroCDF
<< std::endl;
// Get 95% quantile
Point quantile = distribution.computeQuantile( 0.95 );
fullprint << "Quantile=" << quantile << std::endl;
fullprint << "CDF(quantile)=" << distribution.computeCDF(quantile) << std::endl;
//fullprint << "entropy=" << distribution.computeEntropy() << std::endl;
// Extract the marginals
for (UnsignedInteger j = 0; j < dim; ++j)
{
Distribution margin(distribution.getMarginal(j));
fullprint << "margin=" << margin << std::endl;
fullprint << "margin PDF=" << margin.computePDF(Point(1)) << std::endl;
fullprint << "margin CDF=" << margin.computeCDF(Point(1)) << std::endl;
fullprint << "margin quantile=" << margin.computeQuantile(0.95) << std::endl;
fullprint << "margin realization=" << margin.getRealization() << std::endl;
}
}
}
catch (TestFailed & ex)
{
std::cerr << ex << std::endl;
return ExitCode::Error;
}
return ExitCode::Success;
}
|