1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
|
// -*- C++ -*-
/**
* @brief The test file of class FejerAlgorithm
*
* Copyright 2005-2025 Airbus-EDF-IMACS-ONERA-Phimeca
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "openturns/OT.hxx"
#include "openturns/OTtestcode.hxx"
#include <cmath>
using namespace OT;
using namespace OT::Test;
typedef Collection<Complex> ComplexCollection;
int main(int, char *[])
{
TESTPREAMBLE;
OStream fullprint(std::cout);
try
{
{
const SymbolicFunction f("x", "sin(x)");
const Scalar a = -2.5;
const Scalar b = 4.5;
const Interval interval(a, b);
Collection<FejerAlgorithm> algos(0);
algos.add(FejerAlgorithm(Indices(1, 20), FejerAlgorithm::FEJERTYPE1) );
algos.add(FejerAlgorithm(Indices(1, 20), FejerAlgorithm::FEJERTYPE2));
algos.add(FejerAlgorithm(Indices(1, 20), FejerAlgorithm::CLENSHAWCURTIS));
FejerAlgorithm algo;
Sample adaptedNodes;
Scalar value;
const Scalar referenceValue = cos(a) - cos(b);
for (UnsignedInteger testCase = 0; testCase < algos.getSize(); ++ testCase)
{
algo = algos[testCase];
value = algo.integrate(f, interval)[0];
assert_almost_equal(value, referenceValue, 1e-10, 1e-10);
// Low-level interface
value = algo.integrateWithNodes(f, interval, adaptedNodes)[0];
assert_almost_equal(value, referenceValue, 1e-10, 1e-10);
}
}
{
const Description inputVariables = {"x", "y"};
const Description outputVariables = {"cos(pi_ * x / 2) * sin(pi_ * y)"};
const SymbolicFunction f(inputVariables, outputVariables);
const Scalar referenceValue = 8 / (M_PI * M_PI);
const Point lowerBounds = {-1.0, 0.0};
const Point upperBounds = {1.0, 1.0};
const Interval interval(lowerBounds, upperBounds);
Collection<FejerAlgorithm> algos(0);
algos.add(FejerAlgorithm(Indices(2, 20), FejerAlgorithm::FEJERTYPE1));
algos.add(FejerAlgorithm(Indices(2, 20), FejerAlgorithm::FEJERTYPE2));
algos.add(FejerAlgorithm(Indices(2, 20), FejerAlgorithm::CLENSHAWCURTIS));
FejerAlgorithm algo;
Scalar value;
Sample adaptedNodes;
for (UnsignedInteger testCase = 0; testCase < algos.getSize(); ++testCase)
{
algo = algos[testCase];
value = algo.integrate(f, interval)[0];
assert_almost_equal(value, referenceValue, 1e-10, 1e-10);
// Low-level interface
value = algo.integrateWithNodes(f, interval, adaptedNodes)[0];
assert_almost_equal(value, referenceValue, 1e-10, 1e-10);
}
}
{
const Description inputVariables = {"x", "y"};
const Description outputVariables = {"cos(pi_ * x / 2) * sin(pi_ * y / 2 + pi_/2 ) / 2"};
const SymbolicFunction f(inputVariables, outputVariables);
const Scalar referenceValue = 8 / (M_PI * M_PI);
const Point lowerBounds = {-1.0, -1.0};
const Point upperBounds = {1.0, 1.0};
const Interval interval(lowerBounds, upperBounds);
Collection<FejerAlgorithm> algos(0);
algos.add(FejerAlgorithm(Indices(2, 20), FejerAlgorithm::FEJERTYPE1));
algos.add(FejerAlgorithm(Indices(2, 20), FejerAlgorithm::FEJERTYPE2));
algos.add(FejerAlgorithm(Indices(2, 20), FejerAlgorithm::CLENSHAWCURTIS));
FejerAlgorithm algo;
Sample adaptedNodes;
Scalar value;
for (UnsignedInteger testCase = 0; testCase < algos.getSize(); ++testCase)
{
algo = algos[testCase];
value = algo.integrate(f, interval)[0];
assert_almost_equal(value, referenceValue, 1e-10, 1e-10);
// Low-level interface
value = algo.integrateWithNodes(f, interval, adaptedNodes)[0];
assert_almost_equal(value, referenceValue, 1e-10, 1e-10);
}
}
}
catch (TestFailed &ex)
{
std::cerr << ex << std::endl;
return ExitCode::Error;
}
return ExitCode::Success;
}
|