1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
|
// -*- C++ -*-
/**
* @brief The test file of GeneralLinearModelAlgorithm class
*
* Copyright 2005-2025 Airbus-EDF-IMACS-ONERA-Phimeca
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "openturns/OT.hxx"
#include "openturns/OTtestcode.hxx"
using namespace OT;
using namespace OT::Test;
int main(int, char *[])
{
TESTPREAMBLE;
OStream fullprint(std::cout);
try
{
// Set Numerical precision to 4
PlatformInfo::SetNumericalPrecision(4);
UnsignedInteger sampleSize = 40;
UnsignedInteger inputDimension = 1;
// Create the function to estimate
SymbolicFunction model("x0", "x0");
Sample X(sampleSize, inputDimension);
for (UnsignedInteger i = 0; i < sampleSize; ++ i)
X(i, 0) = 3.0 + (8.0 * i) / sampleSize;
Sample Y = model(X);
// Add a small noise to data
Y += GaussianProcess(AbsoluteExponential(Point(1, 0.1), Point(1, 0.2)), Mesh(X)).getRealization().getValues();
Basis basis = LinearBasisFactory(inputDimension).build();
// Case of a misspecified covariance model
DiracCovarianceModel covarianceModel(inputDimension);
GeneralLinearModelAlgorithm algo(X, Y, covarianceModel, basis);
algo.run();
GeneralLinearModelResult result = algo.getResult();
Point ref = {0.1957};
assert_almost_equal(result.getCovarianceModel().getParameter(), ref, 1e-4, 1e-4);
ref = {-0.1109, 1.015};
assert_almost_equal(result.getTrendCoefficients(), ref, 1e-4, 1e-4);
// Now without estimating covariance parameters
basis = LinearBasisFactory(inputDimension).build();
covarianceModel = DiracCovarianceModel(inputDimension);
algo = GeneralLinearModelAlgorithm(X, Y, covarianceModel, basis, true);
algo.setOptimizeParameters(false);
algo.run();
result = algo.getResult();
ref = {1.0};
assert_almost_equal(result.getCovarianceModel().getParameter(), ref, 1e-4, 1e-4);
ref = {-0.1109, 1.015};
assert_almost_equal(result.getTrendCoefficients(), ref, 1e-4, 1e-4);
// Case of a well specified covariance model
// Test the optimization when the amplitude is deduced analytically from the scale
{
AbsoluteExponential covarianceModel2(inputDimension);
algo = GeneralLinearModelAlgorithm(X, Y, covarianceModel2, basis);
algo.run();
result = algo.getResult();
ref = {0.1328, 0.1956};
assert_almost_equal(result.getCovarianceModel().getParameter(), ref, 1e-4, 1e-4);
ref = {-0.1034, 1.014};
assert_almost_equal(result.getTrendCoefficients(), ref, 1e-4, 1e-4);
ResourceMap::SetAsBool("GeneralLinearModelAlgorithm-UnbiasedVariance", false);
algo = GeneralLinearModelAlgorithm(X, Y, covarianceModel2, basis);
algo.run();
result = algo.getResult();
ref = {0.1328, 0.1907};
assert_almost_equal(result.getCovarianceModel().getParameter(), ref, 1e-4, 1e-4);
ref = {-0.1034, 1.014};
assert_almost_equal(result.getTrendCoefficients(), ref, 1e-4, 1e-4);
ResourceMap::SetAsBool("GeneralLinearModelAlgorithm-UseAnalyticalAmplitudeEstimate", false);
algo = GeneralLinearModelAlgorithm(X, Y, covarianceModel2, basis);
algo.run();
result = algo.getResult();
ref = {0.01, 0.1908};
assert_almost_equal(result.getCovarianceModel().getParameter(), ref, 1e-2, 1e-2);
ref = {-0.111, 1.015};
assert_almost_equal(result.getTrendCoefficients(), ref, 1e-4, 1e-4);
}
}
catch (TestFailed & ex)
{
std::cerr << ex << std::endl;
return ExitCode::Error;
}
return ExitCode::Success;
}
|