File: t_GeneralLinearModelAlgorithm_std_hmat.cxx

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (93 lines) | stat: -rw-r--r-- 2,825 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
//                                               -*- C++ -*-
/**
 *  @brief The test file of GeneralLinearModelAlgorithm class
 *
 *  Copyright 2005-2025 Airbus-EDF-IMACS-ONERA-Phimeca
 *
 *  This library is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU Lesser General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public License
 *  along with this library.  If not, see <http://www.gnu.org/licenses/>.
 *
 */
#include "openturns/OT.hxx"
#include "openturns/OTtestcode.hxx"

using namespace OT;
using namespace OT::Test;


int main(int, char *[])
{
  TESTPREAMBLE;
  OStream fullprint(std::cout);
  ResourceMap::Set("GeneralLinearModelAlgorithm-LinearAlgebra", "HMAT");

  try
  {
    // Set Numerical precision to 3
    PlatformInfo::SetNumericalPrecision(3);

    std::cout << "========================" << std::endl;
    std::cout << "Test standard using HMat" << std::endl;
    std::cout << "=======================" << std::endl;
    UnsignedInteger sampleSize = 6;
    UnsignedInteger inputDimension = 1;

    // Create the function to estimate
    Description input(inputDimension);
    input[0] = "x0";
    Description formulas(1);
    formulas[0] = "x0";
    SymbolicFunction model(input, formulas);

    Sample X(sampleSize, inputDimension);
    Sample X2(sampleSize, inputDimension);
    for ( UnsignedInteger i = 0; i < sampleSize; ++ i )
    {
      X(i, 0) = 3.0 + i;
      X2(i, 0) = 2.5 + i;
    }
    X(0, 0) = 1.0;
    X(1, 0) = 3.0;
    X2(0, 0) = 2.0;
    X2(1, 0) = 4.0;
    Sample Y = model(X);
    for ( UnsignedInteger i = 0; i < sampleSize; ++ i )
    {
      Y(i, 0) += 0.01 * DistFunc::rNormal();
    }
    // Add a small noise to data
    model(X2);

    Basis basis = LinearBasisFactory(inputDimension).build();
    DiracCovarianceModel covarianceModel(inputDimension);
    GeneralLinearModelAlgorithm algo(X, Y, covarianceModel, basis);
    algo.run();

    // perform an evaluation
    GeneralLinearModelResult result = algo.getResult();
    Function metaModel = result.getMetaModel();
    result.getCovarianceModel();
    const Sample residual = metaModel(X) - Y;
    assert_almost_equal(residual.computeCentralMoment(2), Point(1, 0.00013144), 1e-5, 1e-5);
    std::cout << "Test Ok" << std::endl;

  }
  catch (TestFailed & ex)
  {
    std::cerr << ex << std::endl;
    return ExitCode::Error;
  }


  return ExitCode::Success;
}