1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
|
Testing class GeneralizedExtremeValue
checkConstructorAndDestructor()
checkCopyConstructor()
streamObject(const T & anObject)
class=GeneralizedExtremeValue name=GeneralizedExtremeValue mu=2 sigma=1.5 xi=-0.5 actual distribution=class=WeibullMax name=WeibullMax dimension=1 beta=3 alpha=2 gamma=5
streamObject(const T & anObject)
class=GeneralizedExtremeValue name=GeneralizedExtremeValue mu=2 sigma=1.5 xi=-0.5 actual distribution=class=WeibullMax name=WeibullMax dimension=1 beta=3 alpha=2 gamma=5
areSameObjects(const T & firstObject, const T & secondObject)
areDifferentObjects(const T & firstObject, const T & secondObject)
Distribution class=GeneralizedExtremeValue name=GeneralizedExtremeValue mu=2 sigma=1.5 xi=-0.15 actual distribution=class=WeibullMax name=WeibullMax dimension=1 beta=10 alpha=6.66667 gamma=12
Distribution GeneralizedExtremeValue(mu=2, sigma=1.5, xi=-0.15)
Elliptical = false
Continuous = true
oneRealization=class=Point name=Unnamed dimension=1 values=[2.00915]
oneSample first=class=Point name=Unnamed dimension=1 values=[0.788048] last=class=Point name=Unnamed dimension=1 values=[2.8505]
mean=class=Point name=Unnamed dimension=1 values=[2.65453]
covariance=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[2.73151]
Kolmogorov test for the generator, sample size=100 is accepted
Kolmogorov test for the generator, sample size=1000 is accepted
Point= class=Point name=Unnamed dimension=1 values=[1]
ddf =class=Point name=Unnamed dimension=1 values=[0.108952]
log pdf=-1.75315
pdf =0.173227
pdf (FD)=0.173227
cdf=0.151408
ccdf=0.848592
survival=0.848592
Inverse survival=class=Point name=Unnamed dimension=1 values=[0.211041]
Survival(inverse survival)=0.95
pdf gradient =class=Point name=Unnamed dimension=3 values=[-0.108952,-0.0428497,0.0749046]
pdf gradient (FD)=class=Point name=Unnamed dimension=3 values=[-0.108952,-0.0428497,0.0749046]
cdf gradient =class=Point name=Unnamed dimension=3 values=[-0.173227,0.115485,-0.0559084]
cdf gradient (FD)=class=Point name=Unnamed dimension=3 values=[-0.173227,0.115485,-0.0559084]
quantile=class=Point name=Unnamed dimension=1 values=[5.59515]
cdf(quantile)=0.95
Minimum volume interval=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[-0.359967] upper bound=class=Point name=Unnamed dimension=1 values=[5.97545] finite lower bound=[1] finite upper bound=[1]
threshold=0.95
Minimum volume level set=class=LevelSet name=Unnamed dimension=1 function=class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[X0,-logPDF] evaluationImplementation=MinimumVolumeLevelSetEvaluation(GeneralizedExtremeValue(mu=2, sigma=1.5, xi=-0.15)) gradientImplementation=MinimumVolumeLevelSetGradient(GeneralizedExtremeValue(mu=2, sigma=1.5, xi=-0.15)) hessianImplementation=class=CenteredFiniteDifferenceHessian name=Unnamed epsilon=class=Point name=Unnamed dimension=1 values=[0.0001] evaluation=MinimumVolumeLevelSetEvaluation(GeneralizedExtremeValue(mu=2, sigma=1.5, xi=-0.15)) level=3.31111
beta=0.0364758
Bilateral confidence interval=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[-0.162817] upper bound=class=Point name=Unnamed dimension=1 values=[6.23879] finite lower bound=[1] finite upper bound=[1]
beta=0.95
Unilateral confidence interval (lower tail)=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[-4.83649] upper bound=class=Point name=Unnamed dimension=1 values=[5.59515] finite lower bound=[1] finite upper bound=[1]
beta=0.95
Unilateral confidence interval (upper tail)=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[0.211041] upper bound=class=Point name=Unnamed dimension=1 values=[12] finite lower bound=[1] finite upper bound=[1]
beta=0.95
entropy=1.8961
entropy (MC)=1.89661
mean=class=Point name=Unnamed dimension=1 values=[2.66959]
standard deviation=class=Point name=Unnamed dimension=1 values=[1.64028]
skewness=class=Point name=Unnamed dimension=1 values=[0.435743]
kurtosis=class=Point name=Unnamed dimension=1 values=[3.13766]
covariance=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[2.69053]
correlation=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
spearman=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
kendall=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
parameters=[[mu : 2, sigma : 1.5, xi : -0.15]]
Standard representative=class=WeibullMax name=WeibullMax dimension=1 beta=1 alpha=6.66667 gamma=0
mu=2
sigma=1.5
xi=-0.15
Actual distribution=class=WeibullMax name=WeibullMax dimension=1 beta=10 alpha=6.66667 gamma=12
Distribution class=GeneralizedExtremeValue name=GeneralizedExtremeValue mu=2 sigma=1.5 xi=0 actual distribution=class=Gumbel name=Gumbel dimension=1 beta=1.5 gamma=2
Distribution GeneralizedExtremeValue(mu=2, sigma=1.5, xi=0)
Elliptical = false
Continuous = true
oneRealization=class=Point name=Unnamed dimension=1 values=[0.17248]
oneSample first=class=Point name=Unnamed dimension=1 values=[3.9261] last=class=Point name=Unnamed dimension=1 values=[2.95417]
mean=class=Point name=Unnamed dimension=1 values=[2.8704]
covariance=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[3.61937]
Kolmogorov test for the generator, sample size=100 is accepted
Kolmogorov test for the generator, sample size=1000 is accepted
Point= class=Point name=Unnamed dimension=1 values=[1]
ddf =class=Point name=Unnamed dimension=1 values=[0.116989]
log pdf=-1.68653
pdf =0.18516
pdf (FD)=0.18516
cdf=0.142597
ccdf=0.857403
survival=0.857403
Inverse survival=class=Point name=Unnamed dimension=1 values=[0.354217]
Survival(inverse survival)=0.95
pdf gradient =class=Point name=Unnamed dimension=3 values=[-0.116989,-0.0454479,0.0844441]
pdf gradient (FD)=class=Point name=Unnamed dimension=3 values=[-0.116989,-0.0454479,0.0844441]
cdf gradient =class=Point name=Unnamed dimension=3 values=[-0.18516,0.12344,-0.0617202]
cdf gradient (FD)=class=Point name=Unnamed dimension=3 values=[-0.18516,0.12344,-0.0617202]
quantile=class=Point name=Unnamed dimension=1 values=[6.45529]
cdf(quantile)=0.95
Minimum volume interval=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[-0.341999] upper bound=class=Point name=Unnamed dimension=1 values=[6.74221] finite lower bound=[1] finite upper bound=[1]
threshold=0.95
Minimum volume level set=class=LevelSet name=Unnamed dimension=1 function=class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[X0,-logPDF] evaluationImplementation=MinimumVolumeLevelSetEvaluation(GeneralizedExtremeValue(mu=2, sigma=1.5, xi=0)) gradientImplementation=MinimumVolumeLevelSetGradient(GeneralizedExtremeValue(mu=2, sigma=1.5, xi=0)) hessianImplementation=class=CenteredFiniteDifferenceHessian name=Unnamed epsilon=class=Point name=Unnamed dimension=1 values=[0.0001] evaluation=MinimumVolumeLevelSetEvaluation(GeneralizedExtremeValue(mu=2, sigma=1.5, xi=0)) level=3.6093
beta=0.0270708
Bilateral confidence interval=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[0.0420159] upper bound=class=Point name=Unnamed dimension=1 values=[7.51437] finite lower bound=[1] finite upper bound=[1]
beta=0.95
Unilateral confidence interval (lower tail)=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[-3.20963] upper bound=class=Point name=Unnamed dimension=1 values=[6.45529] finite lower bound=[1] finite upper bound=[1]
beta=0.95
Unilateral confidence interval (upper tail)=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[0.354217] upper bound=class=Point name=Unnamed dimension=1 values=[50.3543] finite lower bound=[1] finite upper bound=[1]
beta=0.95
entropy=1.98268
entropy (MC)=1.98194
mean=class=Point name=Unnamed dimension=1 values=[2.86582]
standard deviation=class=Point name=Unnamed dimension=1 values=[1.92382]
skewness=class=Point name=Unnamed dimension=1 values=[1.13955]
kurtosis=class=Point name=Unnamed dimension=1 values=[5.4]
covariance=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[3.7011]
correlation=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
spearman=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
kendall=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
parameters=[[mu : 2, sigma : 1.5, xi : 0]]
Standard representative=class=Gumbel name=Gumbel dimension=1 beta=1 gamma=0
mu=2
sigma=1.5
xi=0
Actual distribution=class=Gumbel name=Gumbel dimension=1 beta=1.5 gamma=2
Distribution class=GeneralizedExtremeValue name=GeneralizedExtremeValue mu=2 sigma=1.5 xi=0.15 actual distribution=class=Frechet name=Frechet dimension=1 beta=10 alpha=6.66667 gamma=-8
Distribution GeneralizedExtremeValue(mu=2, sigma=1.5, xi=0.15)
Elliptical = false
Continuous = true
oneRealization=class=Point name=Unnamed dimension=1 values=[3.21984]
oneSample first=class=Point name=Unnamed dimension=1 values=[0.921849] last=class=Point name=Unnamed dimension=1 values=[3.34899]
mean=class=Point name=Unnamed dimension=1 values=[3.166]
covariance=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[6.66831]
Kolmogorov test for the generator, sample size=100 is accepted
Kolmogorov test for the generator, sample size=1000 is accepted
Point= class=Point name=Unnamed dimension=1 values=[1]
ddf =class=Point name=Unnamed dimension=1 values=[0.127801]
log pdf=-1.6163
pdf =0.198632
pdf (FD)=0.198632
cdf=0.132842
ccdf=0.867158
survival=0.867158
Inverse survival=class=Point name=Unnamed dimension=1 values=[0.482513]
Survival(inverse survival)=0.95
pdf gradient =class=Point name=Unnamed dimension=3 values=[-0.127801,-0.0472207,0.095424]
pdf gradient (FD)=class=Point name=Unnamed dimension=3 values=[-0.127801,-0.0472207,0.095424]
cdf gradient =class=Point name=Unnamed dimension=3 values=[-0.198632,0.132422,-0.0685353]
cdf gradient (FD)=class=Point name=Unnamed dimension=3 values=[-0.198632,0.132422,-0.0685353]
quantile=class=Point name=Unnamed dimension=1 values=[7.61316]
cdf(quantile)=0.95
Minimum volume interval=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[-0.261956] upper bound=class=Point name=Unnamed dimension=1 values=[7.81353] finite lower bound=[1] finite upper bound=[1]
threshold=0.95
Minimum volume level set=class=LevelSet name=Unnamed dimension=1 function=class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[X0,-logPDF] evaluationImplementation=MinimumVolumeLevelSetEvaluation(GeneralizedExtremeValue(mu=2, sigma=1.5, xi=0.15)) gradientImplementation=MinimumVolumeLevelSetGradient(GeneralizedExtremeValue(mu=2, sigma=1.5, xi=0.15)) hessianImplementation=class=CenteredFiniteDifferenceHessian name=Unnamed epsilon=class=Point name=Unnamed dimension=1 values=[0.0001] evaluation=MinimumVolumeLevelSetEvaluation(GeneralizedExtremeValue(mu=2, sigma=1.5, xi=0.15)) level=3.47643e+56
beta=0
Bilateral confidence interval=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[0.22178] upper bound=class=Point name=Unnamed dimension=1 values=[9.35746] finite lower bound=[1] finite upper bound=[1]
beta=0.95
Unilateral confidence interval (lower tail)=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[-8] upper bound=class=Point name=Unnamed dimension=1 values=[7.61316] finite lower bound=[1] finite upper bound=[1]
beta=0.95
Unilateral confidence interval (upper tail)=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[0.482513] upper bound=class=Point name=Unnamed dimension=1 values=[1251.08] finite lower bound=[1] finite upper bound=[1]
beta=0.95
entropy=2.06926
entropy (MC)=2.07062
mean=class=Point name=Unnamed dimension=1 values=[3.12484]
standard deviation=class=Point name=Unnamed dimension=1 values=[2.45836]
skewness=class=Point name=Unnamed dimension=1 values=[2.53025]
kurtosis=class=Point name=Unnamed dimension=1 values=[19.2742]
covariance=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[6.04353]
correlation=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
spearman=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
kendall=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
parameters=[[mu : 2, sigma : 1.5, xi : 0.15]]
Standard representative=class=Frechet name=Frechet dimension=1 beta=1 alpha=6.66667 gamma=0
mu=2
sigma=1.5
xi=0.15
Actual distribution=class=Frechet name=Frechet dimension=1 beta=10 alpha=6.66667 gamma=-8
|