File: t_GeneralizedExtremeValue_std.expout

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (165 lines) | stat: -rw-r--r-- 13,650 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
Testing class GeneralizedExtremeValue
checkConstructorAndDestructor()
checkCopyConstructor()
streamObject(const T & anObject)
class=GeneralizedExtremeValue name=GeneralizedExtremeValue mu=2 sigma=1.5 xi=-0.5 actual distribution=class=WeibullMax name=WeibullMax dimension=1 beta=3 alpha=2 gamma=5
streamObject(const T & anObject)
class=GeneralizedExtremeValue name=GeneralizedExtremeValue mu=2 sigma=1.5 xi=-0.5 actual distribution=class=WeibullMax name=WeibullMax dimension=1 beta=3 alpha=2 gamma=5
areSameObjects(const T & firstObject, const T & secondObject)
areDifferentObjects(const T & firstObject, const T & secondObject)
Distribution class=GeneralizedExtremeValue name=GeneralizedExtremeValue mu=2 sigma=1.5 xi=-0.15 actual distribution=class=WeibullMax name=WeibullMax dimension=1 beta=10 alpha=6.66667 gamma=12
Distribution GeneralizedExtremeValue(mu=2, sigma=1.5, xi=-0.15)
Elliptical = false
Continuous = true
oneRealization=class=Point name=Unnamed dimension=1 values=[2.00915]
oneSample first=class=Point name=Unnamed dimension=1 values=[0.788048] last=class=Point name=Unnamed dimension=1 values=[2.8505]
mean=class=Point name=Unnamed dimension=1 values=[2.65453]
covariance=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[2.73151]
Kolmogorov test for the generator, sample size=100 is accepted
Kolmogorov test for the generator, sample size=1000 is accepted
Point= class=Point name=Unnamed dimension=1 values=[1]
ddf     =class=Point name=Unnamed dimension=1 values=[0.108952]
log pdf=-1.75315
pdf     =0.173227
pdf (FD)=0.173227
cdf=0.151408
ccdf=0.848592
survival=0.848592
Inverse survival=class=Point name=Unnamed dimension=1 values=[0.211041]
Survival(inverse survival)=0.95
pdf gradient     =class=Point name=Unnamed dimension=3 values=[-0.108952,-0.0428497,0.0749046]
pdf gradient (FD)=class=Point name=Unnamed dimension=3 values=[-0.108952,-0.0428497,0.0749046]
cdf gradient     =class=Point name=Unnamed dimension=3 values=[-0.173227,0.115485,-0.0559084]
cdf gradient (FD)=class=Point name=Unnamed dimension=3 values=[-0.173227,0.115485,-0.0559084]
quantile=class=Point name=Unnamed dimension=1 values=[5.59515]
cdf(quantile)=0.95
Minimum volume interval=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[-0.359967] upper bound=class=Point name=Unnamed dimension=1 values=[5.97545] finite lower bound=[1] finite upper bound=[1]
threshold=0.95
Minimum volume level set=class=LevelSet name=Unnamed dimension=1 function=class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[X0,-logPDF] evaluationImplementation=MinimumVolumeLevelSetEvaluation(GeneralizedExtremeValue(mu=2, sigma=1.5, xi=-0.15)) gradientImplementation=MinimumVolumeLevelSetGradient(GeneralizedExtremeValue(mu=2, sigma=1.5, xi=-0.15)) hessianImplementation=class=CenteredFiniteDifferenceHessian name=Unnamed epsilon=class=Point name=Unnamed dimension=1 values=[0.0001] evaluation=MinimumVolumeLevelSetEvaluation(GeneralizedExtremeValue(mu=2, sigma=1.5, xi=-0.15)) level=3.31111
beta=0.0364758
Bilateral confidence interval=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[-0.162817] upper bound=class=Point name=Unnamed dimension=1 values=[6.23879] finite lower bound=[1] finite upper bound=[1]
beta=0.95
Unilateral confidence interval (lower tail)=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[-4.83649] upper bound=class=Point name=Unnamed dimension=1 values=[5.59515] finite lower bound=[1] finite upper bound=[1]
beta=0.95
Unilateral confidence interval (upper tail)=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[0.211041] upper bound=class=Point name=Unnamed dimension=1 values=[12] finite lower bound=[1] finite upper bound=[1]
beta=0.95
entropy=1.8961
entropy (MC)=1.89661
mean=class=Point name=Unnamed dimension=1 values=[2.66959]
standard deviation=class=Point name=Unnamed dimension=1 values=[1.64028]
skewness=class=Point name=Unnamed dimension=1 values=[0.435743]
kurtosis=class=Point name=Unnamed dimension=1 values=[3.13766]
covariance=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[2.69053]
correlation=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
spearman=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
kendall=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
parameters=[[mu : 2, sigma : 1.5, xi : -0.15]]
Standard representative=class=WeibullMax name=WeibullMax dimension=1 beta=1 alpha=6.66667 gamma=0
mu=2
sigma=1.5
xi=-0.15
Actual distribution=class=WeibullMax name=WeibullMax dimension=1 beta=10 alpha=6.66667 gamma=12
Distribution class=GeneralizedExtremeValue name=GeneralizedExtremeValue mu=2 sigma=1.5 xi=0 actual distribution=class=Gumbel name=Gumbel dimension=1 beta=1.5 gamma=2
Distribution GeneralizedExtremeValue(mu=2, sigma=1.5, xi=0)
Elliptical = false
Continuous = true
oneRealization=class=Point name=Unnamed dimension=1 values=[0.17248]
oneSample first=class=Point name=Unnamed dimension=1 values=[3.9261] last=class=Point name=Unnamed dimension=1 values=[2.95417]
mean=class=Point name=Unnamed dimension=1 values=[2.8704]
covariance=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[3.61937]
Kolmogorov test for the generator, sample size=100 is accepted
Kolmogorov test for the generator, sample size=1000 is accepted
Point= class=Point name=Unnamed dimension=1 values=[1]
ddf     =class=Point name=Unnamed dimension=1 values=[0.116989]
log pdf=-1.68653
pdf     =0.18516
pdf (FD)=0.18516
cdf=0.142597
ccdf=0.857403
survival=0.857403
Inverse survival=class=Point name=Unnamed dimension=1 values=[0.354217]
Survival(inverse survival)=0.95
pdf gradient     =class=Point name=Unnamed dimension=3 values=[-0.116989,-0.0454479,0.0844441]
pdf gradient (FD)=class=Point name=Unnamed dimension=3 values=[-0.116989,-0.0454479,0.0844441]
cdf gradient     =class=Point name=Unnamed dimension=3 values=[-0.18516,0.12344,-0.0617202]
cdf gradient (FD)=class=Point name=Unnamed dimension=3 values=[-0.18516,0.12344,-0.0617202]
quantile=class=Point name=Unnamed dimension=1 values=[6.45529]
cdf(quantile)=0.95
Minimum volume interval=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[-0.341999] upper bound=class=Point name=Unnamed dimension=1 values=[6.74221] finite lower bound=[1] finite upper bound=[1]
threshold=0.95
Minimum volume level set=class=LevelSet name=Unnamed dimension=1 function=class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[X0,-logPDF] evaluationImplementation=MinimumVolumeLevelSetEvaluation(GeneralizedExtremeValue(mu=2, sigma=1.5, xi=0)) gradientImplementation=MinimumVolumeLevelSetGradient(GeneralizedExtremeValue(mu=2, sigma=1.5, xi=0)) hessianImplementation=class=CenteredFiniteDifferenceHessian name=Unnamed epsilon=class=Point name=Unnamed dimension=1 values=[0.0001] evaluation=MinimumVolumeLevelSetEvaluation(GeneralizedExtremeValue(mu=2, sigma=1.5, xi=0)) level=3.6093
beta=0.0270708
Bilateral confidence interval=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[0.0420159] upper bound=class=Point name=Unnamed dimension=1 values=[7.51437] finite lower bound=[1] finite upper bound=[1]
beta=0.95
Unilateral confidence interval (lower tail)=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[-3.20963] upper bound=class=Point name=Unnamed dimension=1 values=[6.45529] finite lower bound=[1] finite upper bound=[1]
beta=0.95
Unilateral confidence interval (upper tail)=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[0.354217] upper bound=class=Point name=Unnamed dimension=1 values=[50.3543] finite lower bound=[1] finite upper bound=[1]
beta=0.95
entropy=1.98268
entropy (MC)=1.98194
mean=class=Point name=Unnamed dimension=1 values=[2.86582]
standard deviation=class=Point name=Unnamed dimension=1 values=[1.92382]
skewness=class=Point name=Unnamed dimension=1 values=[1.13955]
kurtosis=class=Point name=Unnamed dimension=1 values=[5.4]
covariance=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[3.7011]
correlation=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
spearman=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
kendall=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
parameters=[[mu : 2, sigma : 1.5, xi : 0]]
Standard representative=class=Gumbel name=Gumbel dimension=1 beta=1 gamma=0
mu=2
sigma=1.5
xi=0
Actual distribution=class=Gumbel name=Gumbel dimension=1 beta=1.5 gamma=2
Distribution class=GeneralizedExtremeValue name=GeneralizedExtremeValue mu=2 sigma=1.5 xi=0.15 actual distribution=class=Frechet name=Frechet dimension=1 beta=10 alpha=6.66667 gamma=-8
Distribution GeneralizedExtremeValue(mu=2, sigma=1.5, xi=0.15)
Elliptical = false
Continuous = true
oneRealization=class=Point name=Unnamed dimension=1 values=[3.21984]
oneSample first=class=Point name=Unnamed dimension=1 values=[0.921849] last=class=Point name=Unnamed dimension=1 values=[3.34899]
mean=class=Point name=Unnamed dimension=1 values=[3.166]
covariance=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[6.66831]
Kolmogorov test for the generator, sample size=100 is accepted
Kolmogorov test for the generator, sample size=1000 is accepted
Point= class=Point name=Unnamed dimension=1 values=[1]
ddf     =class=Point name=Unnamed dimension=1 values=[0.127801]
log pdf=-1.6163
pdf     =0.198632
pdf (FD)=0.198632
cdf=0.132842
ccdf=0.867158
survival=0.867158
Inverse survival=class=Point name=Unnamed dimension=1 values=[0.482513]
Survival(inverse survival)=0.95
pdf gradient     =class=Point name=Unnamed dimension=3 values=[-0.127801,-0.0472207,0.095424]
pdf gradient (FD)=class=Point name=Unnamed dimension=3 values=[-0.127801,-0.0472207,0.095424]
cdf gradient     =class=Point name=Unnamed dimension=3 values=[-0.198632,0.132422,-0.0685353]
cdf gradient (FD)=class=Point name=Unnamed dimension=3 values=[-0.198632,0.132422,-0.0685353]
quantile=class=Point name=Unnamed dimension=1 values=[7.61316]
cdf(quantile)=0.95
Minimum volume interval=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[-0.261956] upper bound=class=Point name=Unnamed dimension=1 values=[7.81353] finite lower bound=[1] finite upper bound=[1]
threshold=0.95
Minimum volume level set=class=LevelSet name=Unnamed dimension=1 function=class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[X0,-logPDF] evaluationImplementation=MinimumVolumeLevelSetEvaluation(GeneralizedExtremeValue(mu=2, sigma=1.5, xi=0.15)) gradientImplementation=MinimumVolumeLevelSetGradient(GeneralizedExtremeValue(mu=2, sigma=1.5, xi=0.15)) hessianImplementation=class=CenteredFiniteDifferenceHessian name=Unnamed epsilon=class=Point name=Unnamed dimension=1 values=[0.0001] evaluation=MinimumVolumeLevelSetEvaluation(GeneralizedExtremeValue(mu=2, sigma=1.5, xi=0.15)) level=3.47643e+56
beta=0
Bilateral confidence interval=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[0.22178] upper bound=class=Point name=Unnamed dimension=1 values=[9.35746] finite lower bound=[1] finite upper bound=[1]
beta=0.95
Unilateral confidence interval (lower tail)=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[-8] upper bound=class=Point name=Unnamed dimension=1 values=[7.61316] finite lower bound=[1] finite upper bound=[1]
beta=0.95
Unilateral confidence interval (upper tail)=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[0.482513] upper bound=class=Point name=Unnamed dimension=1 values=[1251.08] finite lower bound=[1] finite upper bound=[1]
beta=0.95
entropy=2.06926
entropy (MC)=2.07062
mean=class=Point name=Unnamed dimension=1 values=[3.12484]
standard deviation=class=Point name=Unnamed dimension=1 values=[2.45836]
skewness=class=Point name=Unnamed dimension=1 values=[2.53025]
kurtosis=class=Point name=Unnamed dimension=1 values=[19.2742]
covariance=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[6.04353]
correlation=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
spearman=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
kendall=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
parameters=[[mu : 2, sigma : 1.5, xi : 0.15]]
Standard representative=class=Frechet name=Frechet dimension=1 beta=1 alpha=6.66667 gamma=0
mu=2
sigma=1.5
xi=0.15
Actual distribution=class=Frechet name=Frechet dimension=1 beta=10 alpha=6.66667 gamma=-8