1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
|
// -*- C++ -*-
/**
* @brief The test file of KrigingAlgorithm class using IsotropicCovarianceModel
*
* Copyright 2005-2025 Airbus-EDF-IMACS-ONERA-Phimeca
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include <iostream>
#include "openturns/OT.hxx"
#include "openturns/OTtestcode.hxx"
using namespace OT;
using namespace OT::Test;
static KrigingResult fitKriging(const CovarianceModel & covarianceModel)
{
Sample coordinates(9, 2);
coordinates(0, 0) = 1.0;
coordinates(0, 1) = 1.0;
coordinates(1, 0) = 5.0;
coordinates(1, 1) = 1.0;
coordinates(2, 0) = 9.0;
coordinates(2, 1) = 1.0;
coordinates(3, 0) = 1.0;
coordinates(3, 1) = 3.5;
coordinates(4, 0) = 5.0;
coordinates(4, 1) = 3.5;
coordinates(5, 0) = 9.0;
coordinates(5, 1) = 3.5;
coordinates(6, 0) = 1.0;
coordinates(6, 1) = 6.0;
coordinates(7, 0) = 5.0;
coordinates(7, 1) = 6.0;
coordinates(8, 0) = 9.0;
coordinates(8, 1) = 6.0;
Sample observations(9, 1);
observations(0, 0) = 25.0;
observations(1, 0) = 25.0;
observations(2, 0) = 10.0;
observations(3, 0) = 20.0;
observations(4, 0) = 25.0;
observations(5, 0) = 20.0;
observations(6, 0) = 15.0;
observations(7, 0) = 25.0;
observations(8, 0) = 25.0;
Basis basis = ConstantBasisFactory(2).build();
KrigingAlgorithm algo(coordinates, observations, covarianceModel, basis);
algo.run();
return algo.getResult();
}
int main(int, char *[])
{
TESTPREAMBLE;
OStream fullprint(std::cout);
try
{
PlatformInfo::SetNumericalPrecision(3);
{
IsotropicCovarianceModel myIsotropicKernel(SquaredExponential(), 2);
CovarianceModel krigingFittedCovarianceModel = fitKriging(myIsotropicKernel).getCovarianceModel();
assert_almost_equal(krigingFittedCovarianceModel.getScale()[0], 2.86427, 0.0, 1e-4);
assert_almost_equal(krigingFittedCovarianceModel.getAmplitude()[0], 6.65231, 0.0, 1e-4);
}
try
{
IsotropicCovarianceModel(SquaredExponential(), 0);
throw InvalidDimensionException(HERE) << "Invalid IsotropicCovarianceModel should have thrown";
}
catch(const InvalidArgumentException &)
{
// nothing to do
}
}
catch (TestFailed & ex)
{
std::cerr << ex << std::endl;
return ExitCode::Error;
}
return ExitCode::Success;
}
|