1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
|
// -*- C++ -*-
/**
* @brief The test file of KrigingAlgorithm class
*
* Copyright 2005-2025 Airbus-EDF-IMACS-ONERA-Phimeca
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "openturns/OT.hxx"
#include "openturns/OTtestcode.hxx"
using namespace OT;
using namespace OT::Test;
int main(int, char *[])
{
TESTPREAMBLE;
OStream fullprint(std::cout);
try
{
// Set Numerical precision to 3
PlatformInfo::SetNumericalPrecision(3);
{
UnsignedInteger sampleSize = 6;
UnsignedInteger dimension = 1;
// Create the function to estimate
Description input(dimension);
input[0] = "x0";
Description formulas(1);
formulas[0] = "x0 * sin(x0)";
SymbolicFunction model(input, formulas);
Sample X(sampleSize, dimension);
Sample X2(sampleSize, dimension);
for ( UnsignedInteger i = 0; i < sampleSize; ++ i )
{
X(i, 0) = 3.0 + i;
X2(i, 0) = 2.5 + i;
}
X(0, 0) = 1.0;
X(1, 0) = 3.0;
X2(0, 0) = 2.0;
X2(1, 0) = 4.0;
Sample Y(model(X));
Sample Y2(model(X2));
Basis basis(ConstantBasisFactory(dimension).build());
SquaredExponential covarianceModel(Point(1, 1e-02), Point(1, 4.50736));
KrigingAlgorithm algo(X, Y, covarianceModel, basis);
// set sensible optimization bounds and estimate hyperparameters
algo.setOptimizationBounds(Interval(X.getMin(), X.getMax()));
algo.run();
// perform an evaluation
KrigingResult result(algo.getResult());
assert_almost_equal(result.getMetaModel()(X), Y, 1e-3);
// Evaluation of the covariance on the X dataset
CovarianceMatrix covMatrix(result.getConditionalCovariance(X));
// Validation of the covariance ==> should be null on the learning set
assert_almost_equal(covMatrix, SquareMatrix(sampleSize), 0.0, 1e-13);
// Covariance per marginal & extract variance component
Collection<CovarianceMatrix> coll(result.getConditionalMarginalCovariance(X));
for(UnsignedInteger k = 0; k < coll.getSize(); ++k)
assert_almost_equal(coll[k](0, 0), 0.0, 1e-14, 1e-13);
// Validation of marginal variance
const Sample marginalVariance(result.getConditionalMarginalVariance(X));
assert_almost_equal(marginalVariance, Sample(sampleSize, 1), 1e-14, 1e-13);
// Prediction accuracy
assert_almost_equal(Y2, result.getMetaModel()(X2), 0.3, 0.0);
}
{
UnsignedInteger dimension = 2;
UnsignedInteger sampleSize = 8;
// Create the function to estimate
Description input(dimension);
input[0] = "x0";
input[1] = "x1";
Description formulas(1);
formulas[0] = "5.-x1-0.5*(x0-0.1)^2";
SymbolicFunction model(input, formulas);
Sample X(sampleSize, dimension);
X(0, 0) = -4.61611719;
X(0, 1) = -6.00099547;
X(1, 0) = 4.10469096;
X(1, 1) = 5.32782448;
X(2, 0) = 0.;
X(2, 1) = -.5;
X(3, 0) = -6.17289014;
X(3, 1) = -4.6984743;
X(4, 0) = 1.3109306;
X(4, 1) = -6.93271427;
X(5, 0) = -5.03823144;
X(5, 1) = 3.10584743;
X(6, 0) = -2.87600388;
X(6, 1) = 6.74310541;
X(7, 0) = 5.21301203;
X(7, 1) = 4.26386883;
Sample Y(model(X));
// create algorithm
Basis basis(ConstantBasisFactory(dimension).build());
Point scale(2);
scale[0] = 1e-05;
scale[1] = 18.9;
Point amplitude(1, 8.05);
SquaredExponential covarianceModel(scale, amplitude);
KrigingAlgorithm algo(X, Y, covarianceModel, basis);
algo.run();
// perform an evaluation
KrigingResult result(algo.getResult());
assert_almost_equal(result.getMetaModel()(X), Y, 1e-3);
Function metaModel(result.getMetaModel());
// Get the gradient computed by metamodel
Matrix gradientKriging(metaModel.gradient(X[1]));
// Set DF evaluation as gradient and validate
metaModel.setGradient(new CenteredFiniteDifferenceGradient(ResourceMap::GetAsScalar( "CenteredFiniteDifferenceGradient-DefaultEpsilon" ), metaModel.getEvaluation()));
// Get the gradient computed by metamodel using FD
Matrix gradientKrigingFD(metaModel.gradient(X[1]));
// Validation of the gradient
assert_almost_equal(gradientKriging, gradientKrigingFD, 1e-3, 1e-3);
// Covariance per marginal & extract variance component
Collection<CovarianceMatrix> coll(result.getConditionalMarginalCovariance(X));
for(UnsignedInteger k = 0; k < coll.getSize(); ++k)
assert_almost_equal(coll[k](0, 0), 0.0, 1e-13, 1e-13);
// Validation of marginal variance
const Sample marginalVariance(result.getConditionalMarginalVariance(X));
assert_almost_equal(marginalVariance, Sample(sampleSize, 1), 1e-13, 1e-13);
}
{
// fix https: //github.com/openturns/openturns/issues/1861
RandomGenerator::SetSeed(0);
SymbolicFunction rho("tau", "exp(-abs(tau))*cos(2*pi_*abs(tau))");
const Point scale = {1.0};
StationaryFunctionalCovarianceModel model(scale, scale, rho);
const Sample x(Normal(0, 1.0).getSample(20));
const Sample y(x + Normal(0, 0.1).getSample(20));
KrigingAlgorithm algo(x, y, model, LinearBasisFactory().build());
algo.run();
KrigingResult result(algo.getResult());
assert_almost_equal(result.getConditionalMarginalVariance(x), Sample(x.getSize(), 1), 1e-16, 1e-16);
}
}
catch (TestFailed & ex)
{
std::cerr << ex << std::endl;
return ExitCode::Error;
}
return ExitCode::Success;
}
|