1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
|
// -*- C++ -*-
/**
* @brief The test file of class Function for linear combinations
*
* Copyright 2005-2025 Airbus-EDF-IMACS-ONERA-Phimeca
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "openturns/OT.hxx"
#include "openturns/OTtestcode.hxx"
using namespace OT;
using namespace OT::Test;
int main(int, char *[])
{
TESTPREAMBLE;
OStream fullprint(std::cout);
try
{
// First, build two functions from R^3->R^3
Description inVar(2);
inVar[0] = "x1";
inVar[1] = "x2";
Description formula(3);
formula[0] = "x1^3 * sin(x2 + 2.5 * x1) - (x1 + x2)^2 / (1.0 + x2^2)";
formula[1] = "x2^3 * sin(x2 + 2.5 * x1) - (x2 + x1)^2 / (1.0 + x1^2)";
formula[2] = "x1^3 * sin(x1 + 2.5 * x2) - (x2 + x1)^2 / (1.0 + x2^2)";
LinearCombinationEvaluation::FunctionCollection functions(2);
functions[0] = SymbolicFunction(inVar, formula);
formula[0] = "exp(-x1 * x2 + x1) / cos(1.0 + x2 * x2 - x1)";
formula[0] = "exp(-x2 * x1 + x1) / cos(1.0 + x2 * x1 - x2)";
formula[0] = "exp(-x1 * x1 + x2) / cos(1.0 + x1 * x2 - x2)";
functions[1] = SymbolicFunction(inVar, formula);
// Second, build the weights
Point coefficients(2);
coefficients[0] = 0.3;
coefficients[1] = 2.9;
// Third, build the function
LinearCombinationFunction myFunction(functions, coefficients);
Point inPoint(2);
inPoint[0] = 1.2;
inPoint[1] = 2.3;
std::cout << "myFunction=" << myFunction << std::endl;
std::cout << "Value at " << inPoint << "=" << myFunction(inPoint) << std::endl;
std::cout << "Gradient at " << inPoint << "=" << myFunction.gradient(inPoint) << std::endl;
std::cout << "Hessian at " << inPoint << "=" << myFunction.hessian(inPoint) << std::endl;
for (UnsignedInteger i = 0; i < myFunction.getOutputDimension(); ++i)
{
std::cout << "Marginal " << i << "=" << myFunction.getMarginal(i) << std::endl;
}
Indices indices(2);
indices[0] = 0;
indices[1] = 1;
std::cout << "Marginal (0,1)=" << myFunction.getMarginal(indices) << std::endl;
indices[0] = 0;
indices[1] = 2;
std::cout << "Marginal (0,2)=" << myFunction.getMarginal(indices) << std::endl;
indices[0] = 1;
indices[1] = 2;
std::cout << "Marginal (1,2)=" << myFunction.getMarginal(indices) << std::endl;
}
catch (TestFailed & ex)
{
std::cerr << ex << std::endl;
return ExitCode::Error;
}
return ExitCode::Success;
}
|