File: t_MarginalDistribution_std.cxx

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (138 lines) | stat: -rw-r--r-- 5,959 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
//                                               -*- C++ -*-
/**
 *  @brief The test file of class MarginalDistribution for standard methods
 *
 *  Copyright 2005-2025 Airbus-EDF-IMACS-ONERA-Phimeca
 *
 *  This library is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU Lesser General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public License
 *  along with this library.  If not, see <http://www.gnu.org/licenses/>.
 *
 */
#include "openturns/OT.hxx"
#include "openturns/OTtestcode.hxx"

using namespace OT;
using namespace OT::Test;

int main(int, char *[])
{
  TESTPREAMBLE;
  OStream fullprint(std::cout);

  try
  {

    // Test basic functionnalities
    //checkClassWithClassName<TestObject>();

    const UnsignedInteger dimension = 5;
    const Indices indices = {2, 0, 1};
    Collection<Distribution> coll;
    coll.add(Normal(dimension));
    // Here the probabilities don't sum to 1 on purpose
    coll.add(Multinomial(10, Point(dimension, 1.0 / (dimension + 2))));
    for (UnsignedInteger nDistribution = 0; nDistribution < coll.getSize(); ++nDistribution)
    {
      Distribution fullDistribution = coll[nDistribution];
      MarginalDistribution distribution(fullDistribution, indices);
      //distribution.setUsePDF(fullDistribution.isContinuous());
      fullprint << "Distribution " << distribution << std::endl;
      std::cout << "Distribution " << distribution << std::endl;

      // Is this distribution elliptical ?
      fullprint << "Elliptical = " << (distribution.isElliptical() ? "true" : "false") << std::endl;

      // Is this distribution continuous ?
      fullprint << "Continuous = " << (distribution.isContinuous() ? "true" : "false") << std::endl;

      // Is this distribution discrete ?
      fullprint << "Discrete = " << (distribution.isDiscrete() ? "true" : "false") << std::endl;

      // Is this distribution integral ?
      fullprint << "Integral = " << (distribution.isIntegral() ? "true" : "false") << std::endl;

      // Test for realization of distribution
      Point oneRealization = distribution.getRealization();
      fullprint << "oneRealization=" << oneRealization << std::endl;

      // Test for sampling
      UnsignedInteger size = 10000;
      Sample oneSample = distribution.getSample( size );
      fullprint << "oneSample first=" << oneSample[0] << " last=" << oneSample[size - 1] << std::endl;
      fullprint << "mean=" << oneSample.computeMean() << std::endl;
      fullprint << "covariance=" << oneSample.computeCovariance() << std::endl;

      // Define a point
      Point point( distribution.getDimension(), 1.0 );
      fullprint << "Point= " << point << std::endl;

      // Show PDF and CDF of point
      if (distribution.isContinuous())
      {
        Point DDF = distribution.computeDDF( point );
        fullprint << "ddf     =" << DDF << std::endl;
        Scalar LPDF = distribution.computeLogPDF( point );
        fullprint << "log pdf=" << LPDF << std::endl;
      }
      Scalar PDF = distribution.computePDF( point );
      fullprint << "pdf     =" << PDF << std::endl;
      Scalar CDF = distribution.computeCDF( point );
      fullprint << "cdf=" << CDF << std::endl;
      Scalar CCDF = distribution.computeComplementaryCDF( point );
      fullprint << "ccdf=" << CCDF << std::endl;
      Scalar Survival = distribution.computeSurvivalFunction( point );
      fullprint << "survival=" << Survival << std::endl;
      if (distribution.isContinuous())
      {
        Point InverseSurvival = distribution.computeInverseSurvivalFunction(0.95);
        fullprint << "Inverse survival=" << InverseSurvival << std::endl;
        fullprint << "Survival(inverse survival)=" << distribution.computeSurvivalFunction(InverseSurvival) << std::endl;
      }
      Point quantile = distribution.computeQuantile( 0.95 );
      fullprint << "quantile=" << quantile << std::endl;
      fullprint << "cdf(quantile)=" << distribution.computeCDF(quantile) << std::endl;
      Point quantileTail = distribution.computeQuantile( 0.95, true );
      fullprint << "quantile (tail)=" << quantileTail << std::endl;
      Scalar CDFTail = distribution.computeComplementaryCDF( quantileTail );
      fullprint << "cdf (tail)=" << CDFTail << std::endl;
      Point mean = distribution.getMean();
      fullprint << "mean=" << mean << std::endl;
      Point standardDeviation = distribution.getStandardDeviation();
      fullprint << "standard deviation=" << standardDeviation << std::endl;
      Point skewness = distribution.getSkewness();
      fullprint << "skewness=" << skewness << std::endl;
      Point kurtosis = distribution.getKurtosis();
      fullprint << "kurtosis=" << kurtosis << std::endl;
      CovarianceMatrix covariance = distribution.getCovariance();
      fullprint << "covariance=" << covariance << std::endl;
      CorrelationMatrix correlation = distribution.getCorrelation();
      fullprint << "correlation=" << correlation << std::endl;
      if (distribution.isContinuous())
      {
        CovarianceMatrix spearman = distribution.getSpearmanCorrelation();
        fullprint << "spearman=" << spearman << std::endl;
        CovarianceMatrix kendall = distribution.getKendallTau();
        fullprint << "kendall=" << kendall << std::endl;
      }
      fullprint << "Standard representative=" << distribution.getStandardRepresentative().__str__() << std::endl;
    }
  }
  catch (TestFailed & ex)
  {
    std::cerr << ex << std::endl;
    return ExitCode::Error;
  }


  return ExitCode::Success;
}