1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
|
// -*- C++ -*-
/**
* @brief The test file of class MarginalDistribution for standard methods
*
* Copyright 2005-2025 Airbus-EDF-IMACS-ONERA-Phimeca
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "openturns/OT.hxx"
#include "openturns/OTtestcode.hxx"
using namespace OT;
using namespace OT::Test;
int main(int, char *[])
{
TESTPREAMBLE;
OStream fullprint(std::cout);
try
{
// Test basic functionnalities
//checkClassWithClassName<TestObject>();
const UnsignedInteger dimension = 5;
const Indices indices = {2, 0, 1};
Collection<Distribution> coll;
coll.add(Normal(dimension));
// Here the probabilities don't sum to 1 on purpose
coll.add(Multinomial(10, Point(dimension, 1.0 / (dimension + 2))));
for (UnsignedInteger nDistribution = 0; nDistribution < coll.getSize(); ++nDistribution)
{
Distribution fullDistribution = coll[nDistribution];
MarginalDistribution distribution(fullDistribution, indices);
//distribution.setUsePDF(fullDistribution.isContinuous());
fullprint << "Distribution " << distribution << std::endl;
std::cout << "Distribution " << distribution << std::endl;
// Is this distribution elliptical ?
fullprint << "Elliptical = " << (distribution.isElliptical() ? "true" : "false") << std::endl;
// Is this distribution continuous ?
fullprint << "Continuous = " << (distribution.isContinuous() ? "true" : "false") << std::endl;
// Is this distribution discrete ?
fullprint << "Discrete = " << (distribution.isDiscrete() ? "true" : "false") << std::endl;
// Is this distribution integral ?
fullprint << "Integral = " << (distribution.isIntegral() ? "true" : "false") << std::endl;
// Test for realization of distribution
Point oneRealization = distribution.getRealization();
fullprint << "oneRealization=" << oneRealization << std::endl;
// Test for sampling
UnsignedInteger size = 10000;
Sample oneSample = distribution.getSample( size );
fullprint << "oneSample first=" << oneSample[0] << " last=" << oneSample[size - 1] << std::endl;
fullprint << "mean=" << oneSample.computeMean() << std::endl;
fullprint << "covariance=" << oneSample.computeCovariance() << std::endl;
// Define a point
Point point( distribution.getDimension(), 1.0 );
fullprint << "Point= " << point << std::endl;
// Show PDF and CDF of point
if (distribution.isContinuous())
{
Point DDF = distribution.computeDDF( point );
fullprint << "ddf =" << DDF << std::endl;
Scalar LPDF = distribution.computeLogPDF( point );
fullprint << "log pdf=" << LPDF << std::endl;
}
Scalar PDF = distribution.computePDF( point );
fullprint << "pdf =" << PDF << std::endl;
Scalar CDF = distribution.computeCDF( point );
fullprint << "cdf=" << CDF << std::endl;
Scalar CCDF = distribution.computeComplementaryCDF( point );
fullprint << "ccdf=" << CCDF << std::endl;
Scalar Survival = distribution.computeSurvivalFunction( point );
fullprint << "survival=" << Survival << std::endl;
if (distribution.isContinuous())
{
Point InverseSurvival = distribution.computeInverseSurvivalFunction(0.95);
fullprint << "Inverse survival=" << InverseSurvival << std::endl;
fullprint << "Survival(inverse survival)=" << distribution.computeSurvivalFunction(InverseSurvival) << std::endl;
}
Point quantile = distribution.computeQuantile( 0.95 );
fullprint << "quantile=" << quantile << std::endl;
fullprint << "cdf(quantile)=" << distribution.computeCDF(quantile) << std::endl;
Point quantileTail = distribution.computeQuantile( 0.95, true );
fullprint << "quantile (tail)=" << quantileTail << std::endl;
Scalar CDFTail = distribution.computeComplementaryCDF( quantileTail );
fullprint << "cdf (tail)=" << CDFTail << std::endl;
Point mean = distribution.getMean();
fullprint << "mean=" << mean << std::endl;
Point standardDeviation = distribution.getStandardDeviation();
fullprint << "standard deviation=" << standardDeviation << std::endl;
Point skewness = distribution.getSkewness();
fullprint << "skewness=" << skewness << std::endl;
Point kurtosis = distribution.getKurtosis();
fullprint << "kurtosis=" << kurtosis << std::endl;
CovarianceMatrix covariance = distribution.getCovariance();
fullprint << "covariance=" << covariance << std::endl;
CorrelationMatrix correlation = distribution.getCorrelation();
fullprint << "correlation=" << correlation << std::endl;
if (distribution.isContinuous())
{
CovarianceMatrix spearman = distribution.getSpearmanCorrelation();
fullprint << "spearman=" << spearman << std::endl;
CovarianceMatrix kendall = distribution.getKendallTau();
fullprint << "kendall=" << kendall << std::endl;
}
fullprint << "Standard representative=" << distribution.getStandardRepresentative().__str__() << std::endl;
}
}
catch (TestFailed & ex)
{
std::cerr << ex << std::endl;
return ExitCode::Error;
}
return ExitCode::Success;
}
|