File: t_MaximumDistribution_std.expout

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (142 lines) | stat: -rw-r--r-- 11,888 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
Distribution class=MaximumDistribution name=MaximumDistribution distribution=class=Normal name=Normal dimension=5 mean=class=Point name=Unnamed dimension=5 values=[0,0,0,0,0] sigma=class=Point name=Unnamed dimension=5 values=[1,1,1,1,1] correlationMatrix=class=CorrelationMatrix dimension=5 implementation=class=MatrixImplementation name=Unnamed rows=5 columns=5 values=[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1]
Distribution MaximumDistribution(Normal(mu = [0,0,0,0,0], sigma = [1,1,1,1,1], R = 5x5
[[ 1 0 0 0 0 ]
 [ 0 1 0 0 0 ]
 [ 0 0 1 0 0 ]
 [ 0 0 0 1 0 ]
 [ 0 0 0 0 1 ]]))
Elliptical = false
Continuous = true
oneRealization=class=Point name=Unnamed dimension=1 values=[1.20548]
oneSample first=class=Point name=Unnamed dimension=1 values=[1.43725] last=class=Point name=Unnamed dimension=1 values=[0.884963]
mean=class=Point name=Unnamed dimension=1 values=[1.16745]
covariance=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[0.448379]
Kolmogorov test for the generator, sample size=100 is accepted
Kolmogorov test for the generator, sample size=1000 is accepted
Point= class=Point name=Unnamed dimension=1 values=[1]
ddf     =class=Point name=Unnamed dimension=1 values=[0.0911751]
log pdf=-0.500516
pdf     =0.606218
cdf=0.42157
ccdf=0.57843
survival=0.57843
Inverse survival=class=Point name=Unnamed dimension=1 values=[0.123843]
Survival(inverse survival)=0.95
quantile=class=Point name=Unnamed dimension=1 values=[2.31868]
cdf(quantile)=0.95
quantile (tail)=class=Point name=Unnamed dimension=1 values=[0.123843]
cdf (tail)=0.95
Minimum volume interval=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[-0.112778] upper bound=class=Point name=Unnamed dimension=1 values=[2.50221] finite lower bound=[1] finite upper bound=[1]
threshold=0.95
Minimum volume level set=class=LevelSet name=Unnamed dimension=1 function=class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[X0,-logPDF] evaluationImplementation=MinimumVolumeLevelSetEvaluation(MaximumDistribution(Normal(mu = [0,0,0,0,0], sigma = [1,1,1,1,1], R = 5x5
[[ 1 0 0 0 0 ]
 [ 0 1 0 0 0 ]
 [ 0 0 1 0 0 ]
 [ 0 0 0 1 0 ]
 [ 0 0 0 0 1 ]]))) gradientImplementation=MinimumVolumeLevelSetGradient(MaximumDistribution(Normal(mu = [0,0,0,0,0], sigma = [1,1,1,1,1], R = 5x5
[[ 1 0 0 0 0 ]
 [ 0 1 0 0 0 ]
 [ 0 0 1 0 0 ]
 [ 0 0 0 1 0 ]
 [ 0 0 0 0 1 ]]))) hessianImplementation=class=CenteredFiniteDifferenceHessian name=Unnamed epsilon=class=Point name=Unnamed dimension=1 values=[0.0001] evaluation=MinimumVolumeLevelSetEvaluation(MaximumDistribution(Normal(mu = [0,0,0,0,0], sigma = [1,1,1,1,1], R = 5x5
[[ 1 0 0 0 0 ]
 [ 0 1 0 0 0 ]
 [ 0 0 1 0 0 ]
 [ 0 0 0 1 0 ]
 [ 0 0 0 0 1 ]]))) level=2.46478
beta=0.0850272
beta=0.95
beta=0.95
beta=0.95
mean=class=Point name=Unnamed dimension=1 values=[1.16296]
standard deviation=class=Point name=Unnamed dimension=1 values=[0.66898]
skewness=class=Point name=Unnamed dimension=1 values=[0.302571]
kurtosis=class=Point name=Unnamed dimension=1 values=[3.20079]
covariance=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[0.447534]
correlation=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
spearman=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
kendall=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
Standard representative=MaximumDistribution(Normal(mu = [0,0,0,0,0], sigma = [1,1,1,1,1], R = 5x5
[[ 1 0 0 0 0 ]
 [ 0 1 0 0 0 ]
 [ 0 0 1 0 0 ]
 [ 0 0 0 1 0 ]
 [ 0 0 0 0 1 ]]))
Distribution class=MaximumDistribution name=MaximumDistribution distribution=class=Normal name=Normal dimension=1 mean=class=Point name=Unnamed dimension=1 values=[0] sigma=class=Point name=Unnamed dimension=1 values=[1] correlationMatrix=class=CorrelationMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
Distribution MaximumDistribution(JointDistribution(Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), IndependentCopula(dimension = 5)))
Elliptical = false
Continuous = true
oneRealization=class=Point name=Unnamed dimension=1 values=[0.813356]
oneSample first=class=Point name=Unnamed dimension=1 values=[0.764471] last=class=Point name=Unnamed dimension=1 values=[1.04927]
mean=class=Point name=Unnamed dimension=1 values=[1.16838]
covariance=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[0.449251]
Kolmogorov test for the generator, sample size=100 is accepted
Kolmogorov test for the generator, sample size=1000 is accepted
Point= class=Point name=Unnamed dimension=1 values=[1]
ddf     =class=Point name=Unnamed dimension=1 values=[0.0911751]
log pdf=-0.500516
pdf     =0.606218
cdf=0.42157
ccdf=0.57843
survival=0.57843
Inverse survival=class=Point name=Unnamed dimension=1 values=[0.123843]
Survival(inverse survival)=0.95
quantile=class=Point name=Unnamed dimension=1 values=[2.31868]
cdf(quantile)=0.95
quantile (tail)=class=Point name=Unnamed dimension=1 values=[0.123843]
cdf (tail)=0.95
Minimum volume interval=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[-0.112778] upper bound=class=Point name=Unnamed dimension=1 values=[2.50221] finite lower bound=[1] finite upper bound=[1]
threshold=0.95
Minimum volume level set=class=LevelSet name=Unnamed dimension=1 function=class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[X0,-logPDF] evaluationImplementation=MinimumVolumeLevelSetEvaluation(MaximumDistribution(JointDistribution(Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), IndependentCopula(dimension = 5)))) gradientImplementation=MinimumVolumeLevelSetGradient(MaximumDistribution(JointDistribution(Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), IndependentCopula(dimension = 5)))) hessianImplementation=class=CenteredFiniteDifferenceHessian name=Unnamed epsilon=class=Point name=Unnamed dimension=1 values=[0.0001] evaluation=MinimumVolumeLevelSetEvaluation(MaximumDistribution(JointDistribution(Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), IndependentCopula(dimension = 5)))) level=2.46478
beta=0.0850272
beta=0.95
beta=0.95
beta=0.95
mean=class=Point name=Unnamed dimension=1 values=[1.16296]
standard deviation=class=Point name=Unnamed dimension=1 values=[0.66898]
skewness=class=Point name=Unnamed dimension=1 values=[0.302571]
kurtosis=class=Point name=Unnamed dimension=1 values=[3.20079]
covariance=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[0.447534]
correlation=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
spearman=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
kendall=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
Standard representative=MaximumDistribution(JointDistribution(Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), IndependentCopula(dimension = 5)))
Distribution class=MaximumDistribution name=MaximumDistribution distribution=class=Normal name=Normal dimension=1 mean=class=Point name=Unnamed dimension=1 values=[0] sigma=class=Point name=Unnamed dimension=1 values=[1] correlationMatrix=class=CorrelationMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
Distribution MaximumDistribution(JointDistribution(Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), IndependentCopula(dimension = 5)))
Elliptical = false
Continuous = true
oneRealization=class=Point name=Unnamed dimension=1 values=[0.813356]
oneSample first=class=Point name=Unnamed dimension=1 values=[0.764471] last=class=Point name=Unnamed dimension=1 values=[1.04927]
mean=class=Point name=Unnamed dimension=1 values=[1.16838]
covariance=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[0.449251]
Kolmogorov test for the generator, sample size=100 is accepted
Kolmogorov test for the generator, sample size=1000 is accepted
Point= class=Point name=Unnamed dimension=1 values=[1]
ddf     =class=Point name=Unnamed dimension=1 values=[0.0911751]
log pdf=-0.500516
pdf     =0.606218
cdf=0.42157
ccdf=0.57843
survival=0.57843
Inverse survival=class=Point name=Unnamed dimension=1 values=[0.123843]
Survival(inverse survival)=0.95
quantile=class=Point name=Unnamed dimension=1 values=[2.31868]
cdf(quantile)=0.95
quantile (tail)=class=Point name=Unnamed dimension=1 values=[0.123843]
cdf (tail)=0.95
Minimum volume interval=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[-0.112778] upper bound=class=Point name=Unnamed dimension=1 values=[2.50221] finite lower bound=[1] finite upper bound=[1]
threshold=0.95
Minimum volume level set=class=LevelSet name=Unnamed dimension=1 function=class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[X0,-logPDF] evaluationImplementation=MinimumVolumeLevelSetEvaluation(MaximumDistribution(JointDistribution(Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), IndependentCopula(dimension = 5)))) gradientImplementation=MinimumVolumeLevelSetGradient(MaximumDistribution(JointDistribution(Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), IndependentCopula(dimension = 5)))) hessianImplementation=class=CenteredFiniteDifferenceHessian name=Unnamed epsilon=class=Point name=Unnamed dimension=1 values=[0.0001] evaluation=MinimumVolumeLevelSetEvaluation(MaximumDistribution(JointDistribution(Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), IndependentCopula(dimension = 5)))) level=2.46478
beta=0.0850272
beta=0.95
beta=0.95
beta=0.95
mean=class=Point name=Unnamed dimension=1 values=[1.16296]
standard deviation=class=Point name=Unnamed dimension=1 values=[0.66898]
skewness=class=Point name=Unnamed dimension=1 values=[0.302571]
kurtosis=class=Point name=Unnamed dimension=1 values=[3.20079]
covariance=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[0.447534]
correlation=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
spearman=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
kendall=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
Standard representative=MaximumDistribution(JointDistribution(Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), IndependentCopula(dimension = 5)))