1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
|
Distribution class=MaximumDistribution name=MaximumDistribution distribution=class=Normal name=Normal dimension=5 mean=class=Point name=Unnamed dimension=5 values=[0,0,0,0,0] sigma=class=Point name=Unnamed dimension=5 values=[1,1,1,1,1] correlationMatrix=class=CorrelationMatrix dimension=5 implementation=class=MatrixImplementation name=Unnamed rows=5 columns=5 values=[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1]
Distribution MaximumDistribution(Normal(mu = [0,0,0,0,0], sigma = [1,1,1,1,1], R = 5x5
[[ 1 0 0 0 0 ]
[ 0 1 0 0 0 ]
[ 0 0 1 0 0 ]
[ 0 0 0 1 0 ]
[ 0 0 0 0 1 ]]))
Elliptical = false
Continuous = true
oneRealization=class=Point name=Unnamed dimension=1 values=[1.20548]
oneSample first=class=Point name=Unnamed dimension=1 values=[1.43725] last=class=Point name=Unnamed dimension=1 values=[0.884963]
mean=class=Point name=Unnamed dimension=1 values=[1.16745]
covariance=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[0.448379]
Kolmogorov test for the generator, sample size=100 is accepted
Kolmogorov test for the generator, sample size=1000 is accepted
Point= class=Point name=Unnamed dimension=1 values=[1]
ddf =class=Point name=Unnamed dimension=1 values=[0.0911751]
log pdf=-0.500516
pdf =0.606218
cdf=0.42157
ccdf=0.57843
survival=0.57843
Inverse survival=class=Point name=Unnamed dimension=1 values=[0.123843]
Survival(inverse survival)=0.95
quantile=class=Point name=Unnamed dimension=1 values=[2.31868]
cdf(quantile)=0.95
quantile (tail)=class=Point name=Unnamed dimension=1 values=[0.123843]
cdf (tail)=0.95
Minimum volume interval=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[-0.112778] upper bound=class=Point name=Unnamed dimension=1 values=[2.50221] finite lower bound=[1] finite upper bound=[1]
threshold=0.95
Minimum volume level set=class=LevelSet name=Unnamed dimension=1 function=class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[X0,-logPDF] evaluationImplementation=MinimumVolumeLevelSetEvaluation(MaximumDistribution(Normal(mu = [0,0,0,0,0], sigma = [1,1,1,1,1], R = 5x5
[[ 1 0 0 0 0 ]
[ 0 1 0 0 0 ]
[ 0 0 1 0 0 ]
[ 0 0 0 1 0 ]
[ 0 0 0 0 1 ]]))) gradientImplementation=MinimumVolumeLevelSetGradient(MaximumDistribution(Normal(mu = [0,0,0,0,0], sigma = [1,1,1,1,1], R = 5x5
[[ 1 0 0 0 0 ]
[ 0 1 0 0 0 ]
[ 0 0 1 0 0 ]
[ 0 0 0 1 0 ]
[ 0 0 0 0 1 ]]))) hessianImplementation=class=CenteredFiniteDifferenceHessian name=Unnamed epsilon=class=Point name=Unnamed dimension=1 values=[0.0001] evaluation=MinimumVolumeLevelSetEvaluation(MaximumDistribution(Normal(mu = [0,0,0,0,0], sigma = [1,1,1,1,1], R = 5x5
[[ 1 0 0 0 0 ]
[ 0 1 0 0 0 ]
[ 0 0 1 0 0 ]
[ 0 0 0 1 0 ]
[ 0 0 0 0 1 ]]))) level=2.46478
beta=0.0850272
beta=0.95
beta=0.95
beta=0.95
mean=class=Point name=Unnamed dimension=1 values=[1.16296]
standard deviation=class=Point name=Unnamed dimension=1 values=[0.66898]
skewness=class=Point name=Unnamed dimension=1 values=[0.302571]
kurtosis=class=Point name=Unnamed dimension=1 values=[3.20079]
covariance=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[0.447534]
correlation=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
spearman=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
kendall=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
Standard representative=MaximumDistribution(Normal(mu = [0,0,0,0,0], sigma = [1,1,1,1,1], R = 5x5
[[ 1 0 0 0 0 ]
[ 0 1 0 0 0 ]
[ 0 0 1 0 0 ]
[ 0 0 0 1 0 ]
[ 0 0 0 0 1 ]]))
Distribution class=MaximumDistribution name=MaximumDistribution distribution=class=Normal name=Normal dimension=1 mean=class=Point name=Unnamed dimension=1 values=[0] sigma=class=Point name=Unnamed dimension=1 values=[1] correlationMatrix=class=CorrelationMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
Distribution MaximumDistribution(JointDistribution(Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), IndependentCopula(dimension = 5)))
Elliptical = false
Continuous = true
oneRealization=class=Point name=Unnamed dimension=1 values=[0.813356]
oneSample first=class=Point name=Unnamed dimension=1 values=[0.764471] last=class=Point name=Unnamed dimension=1 values=[1.04927]
mean=class=Point name=Unnamed dimension=1 values=[1.16838]
covariance=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[0.449251]
Kolmogorov test for the generator, sample size=100 is accepted
Kolmogorov test for the generator, sample size=1000 is accepted
Point= class=Point name=Unnamed dimension=1 values=[1]
ddf =class=Point name=Unnamed dimension=1 values=[0.0911751]
log pdf=-0.500516
pdf =0.606218
cdf=0.42157
ccdf=0.57843
survival=0.57843
Inverse survival=class=Point name=Unnamed dimension=1 values=[0.123843]
Survival(inverse survival)=0.95
quantile=class=Point name=Unnamed dimension=1 values=[2.31868]
cdf(quantile)=0.95
quantile (tail)=class=Point name=Unnamed dimension=1 values=[0.123843]
cdf (tail)=0.95
Minimum volume interval=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[-0.112778] upper bound=class=Point name=Unnamed dimension=1 values=[2.50221] finite lower bound=[1] finite upper bound=[1]
threshold=0.95
Minimum volume level set=class=LevelSet name=Unnamed dimension=1 function=class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[X0,-logPDF] evaluationImplementation=MinimumVolumeLevelSetEvaluation(MaximumDistribution(JointDistribution(Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), IndependentCopula(dimension = 5)))) gradientImplementation=MinimumVolumeLevelSetGradient(MaximumDistribution(JointDistribution(Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), IndependentCopula(dimension = 5)))) hessianImplementation=class=CenteredFiniteDifferenceHessian name=Unnamed epsilon=class=Point name=Unnamed dimension=1 values=[0.0001] evaluation=MinimumVolumeLevelSetEvaluation(MaximumDistribution(JointDistribution(Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), IndependentCopula(dimension = 5)))) level=2.46478
beta=0.0850272
beta=0.95
beta=0.95
beta=0.95
mean=class=Point name=Unnamed dimension=1 values=[1.16296]
standard deviation=class=Point name=Unnamed dimension=1 values=[0.66898]
skewness=class=Point name=Unnamed dimension=1 values=[0.302571]
kurtosis=class=Point name=Unnamed dimension=1 values=[3.20079]
covariance=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[0.447534]
correlation=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
spearman=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
kendall=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
Standard representative=MaximumDistribution(JointDistribution(Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), IndependentCopula(dimension = 5)))
Distribution class=MaximumDistribution name=MaximumDistribution distribution=class=Normal name=Normal dimension=1 mean=class=Point name=Unnamed dimension=1 values=[0] sigma=class=Point name=Unnamed dimension=1 values=[1] correlationMatrix=class=CorrelationMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
Distribution MaximumDistribution(JointDistribution(Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), IndependentCopula(dimension = 5)))
Elliptical = false
Continuous = true
oneRealization=class=Point name=Unnamed dimension=1 values=[0.813356]
oneSample first=class=Point name=Unnamed dimension=1 values=[0.764471] last=class=Point name=Unnamed dimension=1 values=[1.04927]
mean=class=Point name=Unnamed dimension=1 values=[1.16838]
covariance=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[0.449251]
Kolmogorov test for the generator, sample size=100 is accepted
Kolmogorov test for the generator, sample size=1000 is accepted
Point= class=Point name=Unnamed dimension=1 values=[1]
ddf =class=Point name=Unnamed dimension=1 values=[0.0911751]
log pdf=-0.500516
pdf =0.606218
cdf=0.42157
ccdf=0.57843
survival=0.57843
Inverse survival=class=Point name=Unnamed dimension=1 values=[0.123843]
Survival(inverse survival)=0.95
quantile=class=Point name=Unnamed dimension=1 values=[2.31868]
cdf(quantile)=0.95
quantile (tail)=class=Point name=Unnamed dimension=1 values=[0.123843]
cdf (tail)=0.95
Minimum volume interval=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[-0.112778] upper bound=class=Point name=Unnamed dimension=1 values=[2.50221] finite lower bound=[1] finite upper bound=[1]
threshold=0.95
Minimum volume level set=class=LevelSet name=Unnamed dimension=1 function=class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[X0,-logPDF] evaluationImplementation=MinimumVolumeLevelSetEvaluation(MaximumDistribution(JointDistribution(Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), IndependentCopula(dimension = 5)))) gradientImplementation=MinimumVolumeLevelSetGradient(MaximumDistribution(JointDistribution(Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), IndependentCopula(dimension = 5)))) hessianImplementation=class=CenteredFiniteDifferenceHessian name=Unnamed epsilon=class=Point name=Unnamed dimension=1 values=[0.0001] evaluation=MinimumVolumeLevelSetEvaluation(MaximumDistribution(JointDistribution(Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), IndependentCopula(dimension = 5)))) level=2.46478
beta=0.0850272
beta=0.95
beta=0.95
beta=0.95
mean=class=Point name=Unnamed dimension=1 values=[1.16296]
standard deviation=class=Point name=Unnamed dimension=1 values=[0.66898]
skewness=class=Point name=Unnamed dimension=1 values=[0.302571]
kurtosis=class=Point name=Unnamed dimension=1 values=[3.20079]
covariance=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[0.447534]
correlation=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
spearman=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
kendall=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
Standard representative=MaximumDistribution(JointDistribution(Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), IndependentCopula(dimension = 5)))
|