File: t_MetaModelValidation_std.cxx

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (144 lines) | stat: -rw-r--r-- 5,258 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
//                                               -*- C++ -*-
/**
 *  @brief The test file of FunctionalChaosAlgoritm class
 *
 *  Copyright 2005-2025 Airbus-EDF-IMACS-ONERA-Phimeca
 *
 *  This library is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU Lesser General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public License
 *  along with this library.  If not, see <http://www.gnu.org/licenses/>.
 *
 */
#include "openturns/OT.hxx"
#include "openturns/OTtestcode.hxx"

using namespace OT;
using namespace OT::Test;

int main(int, char *[])
{
  TESTPREAMBLE;
  OStream fullprint(std::cout);

  try
  {

    PlatformInfo::SetNumericalPrecision(3);
    // Problem parameters
    UnsignedInteger dimension = 3;
    Scalar a = 7.0;
    Scalar b = 0.1;
    // Create the Ishigami function
    Description inputVariables(dimension);
    inputVariables[0] = "xi1";
    inputVariables[1] = "xi2";
    inputVariables[2] = "xi3";
    Description formula(1);
    formula[0] = (OSS() << "sin(xi1) + (" << a << ") * (sin(xi2)) ^ 2 + (" << b << ") * xi3^4 * sin(xi1)");
    SymbolicFunction model(inputVariables, formula);

    // Create the input distribution
    Collection<Distribution> marginals(dimension);
    marginals[0] = Uniform(-M_PI, M_PI);
    marginals[1] = Uniform(-M_PI, M_PI);
    marginals[2] = Uniform(-M_PI, M_PI);
    JointDistribution distribution(marginals);

    // Fix sampling size
    const UnsignedInteger samplingSize = 100;

    // Get input & output sample
    LHSExperiment lhs(distribution, samplingSize);
    Sample inputSample = lhs.generate();
    Sample outputSample = model(inputSample);

    // Validation of results on independent samples
    const UnsignedInteger validationSize = 10;
    Sample inputValidation = distribution.getSample(validationSize);
    Sample outputValidation = model(inputValidation);

    // 1) SPC algorithm
    // Create the orthogonal basis
    Collection<OrthogonalUniVariatePolynomialFamily> polynomialCollection(dimension, LegendreFactory());

    LinearEnumerateFunction enumerateFunction(dimension);
    OrthogonalProductPolynomialFactory productBasis(polynomialCollection, enumerateFunction);

    // Create the adaptive strategy
    UnsignedInteger degree = 8;
    UnsignedInteger basisSize = enumerateFunction.getStrataCumulatedCardinal(degree);
    AdaptiveStrategy adaptiveStrategy = FixedStrategy(productBasis, basisSize);

    // Select the fitting algorithm
    FittingAlgorithm fittingAlgorithm = KFold();

    // LSMSF
    LeastSquaresMetaModelSelectionFactory leastSquaresFactory(LARS(), fittingAlgorithm);

    // Projection strategy
    LeastSquaresStrategy projectionStrategy(inputSample, outputSample, leastSquaresFactory);

    FunctionalChaosAlgorithm algo(inputSample, outputSample, distribution, adaptiveStrategy, projectionStrategy);
    // Reinitialize the RandomGenerator to see the effect of the sampling method only
    RandomGenerator::SetSeed(0);
    algo.run();

    // Get the results
    FunctionalChaosResult result = algo.getResult();

    // MetaModelValidation - SPC
    Function metamodel(result.getMetaModel());
    Sample metamodelPredictions(metamodel(inputValidation));
    MetaModelValidation metaModelValidationSPC(outputValidation, metamodelPredictions);

    fullprint << "Sparse chaos scoring" << std::endl;
    fullprint << "R2 = " << std::setprecision(PlatformInfo::GetNumericalPrecision()) << std::fixed << metaModelValidationSPC.computeR2Score() << std::endl;
    fullprint << "Residual sample = " << metaModelValidationSPC.getResidualSample() << std::endl;

    // 2) Kriging algorithm
    // KrigingAlgorithm
    Basis basis(QuadraticBasisFactory(dimension).build());
    // model computed
    Point scale(3);
    scale[0] = 3.52;
    scale[1] = 2.15;
    scale[2] = 2.99;
    Point amplitude(1, 11.41);
    CovarianceModel covarianceModel = GeneralizedExponential(scale, amplitude, 2.0);


    KrigingAlgorithm algo2(inputSample, outputSample, covarianceModel, basis);
    algo2.setOptimizeParameters(false);
    algo2.run();

    KrigingResult result2 = algo2.getResult();

    // MetaModelValidation - KG
    Function metamodel2(result2.getMetaModel());
    Sample metamodelPredictions2(metamodel2(inputValidation));
    MetaModelValidation metaModelValidationKG(outputValidation, metamodelPredictions2);

    fullprint << "Kriging scoring" << std::endl;
    fullprint << "R2 = " << std::setprecision(PlatformInfo::GetNumericalPrecision()) << std::fixed << metaModelValidationKG.computeR2Score() << std::endl;
    PlatformInfo::SetNumericalPrecision(2);
    fullprint << "Residual sample = " << metaModelValidationKG.getResidualSample() << std::endl;

  }
  catch (TestFailed & ex)
  {
    std::cerr << ex << std::endl;
    return ExitCode::Error;
  }


  return ExitCode::Success;
}