File: t_Normal_std.expout

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (351 lines) | stat: -rw-r--r-- 26,994 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351

*** Case 1 ***

Parameters collection=[[mu_0 : 0, sigma_0 : 1]]
Standard representative=Normal(mu = 0, sigma = 1)
Distribution class=Normal name=Normal dimension=1 mean=class=Point name=Unnamed dimension=1 values=[0] sigma=class=Point name=Unnamed dimension=1 values=[1] correlationMatrix=class=CorrelationMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
Distribution Normal(mu = 0, sigma = 1)
Elliptical = true
Continuous = true
oneRealization=class=Point name=Unnamed dimension=1 values=[0.608202]
oneSample first=class=Point name=Unnamed dimension=1 values=[-1.26617] last=class=Point name=Unnamed dimension=1 values=[1.5244]
mean=class=Point name=Unnamed dimension=1 values=[-0.0132171]
covariance=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1.0005]
Kolmogorov test for the generator, sample size=100 is accepted
Kolmogorov test for the generator, sample size=1000 is accepted
Point= class=Point name=Unnamed dimension=1 values=[0.5]
ddf     =class=Point name=Unnamed dimension=1 values=[-0.176033]
log pdf=-1.0439
pdf     =0.35207
pdf (FD)=0.35207
cdf=0.69146
ccdf=0.30854
survival=0.30854
Inverse survival=class=Point name=Unnamed dimension=1 values=[-1.64485]
Survival(inverse survival)=0.95
characteristic function=(0.8825,0)
log characteristic function=(-0.125,0)
pdf gradient     =class=Point name=Unnamed dimension=2 values=[0.176033,-0.264049]
pdf gradient (FD)=class=Point name=Unnamed dimension=2 values=[0.176033,-0.264049]
cdf gradient     =class=Point name=Unnamed dimension=2 values=[-0.352065,-0.176033]
quantile=class=Point name=Unnamed dimension=1 values=[1.645]
cdf(quantile)=0.95
Minimum volume interval=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[-1.95996] upper bound=class=Point name=Unnamed dimension=1 values=[1.95996] finite lower bound=[1] finite upper bound=[1]
threshold=0.95
Minimum volume level set=class=LevelSet name=Unnamed dimension=1 function=class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[Marginal 1,-logPDF] evaluationImplementation=MinimumVolumeLevelSetEvaluation(Normal(mu = 0, sigma = 1)) gradientImplementation=MinimumVolumeLevelSetGradient(Normal(mu = 0, sigma = 1)) hessianImplementation=class=CenteredFiniteDifferenceHessian name=Unnamed epsilon=class=Point name=Unnamed dimension=1 values=[0.0001] evaluation=MinimumVolumeLevelSetEvaluation(Normal(mu = 0, sigma = 1)) level=2.83967
beta=0.058445
Bilateral confidence interval=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[-1.95996] upper bound=class=Point name=Unnamed dimension=1 values=[1.95996] finite lower bound=[1] finite upper bound=[1]
beta=0.95
Unilateral confidence interval (lower tail)=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[-7.65063] upper bound=class=Point name=Unnamed dimension=1 values=[1.64485] finite lower bound=[1] finite upper bound=[1]
beta=0.95
Unilateral confidence interval (upper tail)=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[-1.64485] upper bound=class=Point name=Unnamed dimension=1 values=[7.65063] finite lower bound=[1] finite upper bound=[1]
beta=0.95
entropy=1.4189
entropy (MC)=1.4188
mean=class=Point name=Unnamed dimension=1 values=[0]
standard deviation=class=Point name=Unnamed dimension=1 values=[1]
skewness=class=Point name=Unnamed dimension=1 values=[0]
kurtosis=class=Point name=Unnamed dimension=1 values=[3]
covariance=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
correlation=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
spearman=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
kendall=class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
parameters=[[mu_0 : 0, sigma_0 : 1]]
Standard representative=Normal(mu = 0, sigma = 1)
density generator=0.35207
pdf via density generator=0.35207
density generator derivative     =-0.17603
density generator derivative (FD)=-0.17603
density generator second derivative     =0.088016
density generator second derivative (FD)=0.088016
Radial CDF(2)=0.9545
conditional PDF=0.33322
conditional CDF=0.72575
conditional quantile=0.25335
sequential conditional PDF=class=Point name=Unnamed dimension=1 values=[0.129518]
sequential conditional CDF(class=Point name=Unnamed dimension=1 values=[1.5])=class=Point name=Unnamed dimension=1 values=[0.933193]
sequential conditional quantile(class=Point name=Unnamed dimension=1 values=[0.933193])=class=Point name=Unnamed dimension=1 values=[1.5]
margin=class=Normal name=Normal dimension=1 mean=class=Point name=Unnamed dimension=1 values=[0] sigma=class=Point name=Unnamed dimension=1 values=[1] correlationMatrix=class=CorrelationMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
margin PDF=0.35207
margin CDF=0.69146
margin quantile=class=Point name=Unnamed dimension=1 values=[1.64485]
margin realization=class=Point name=Unnamed dimension=1 values=[-0.147003]
chol=class=Matrix implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
chol*t(chol)=class=Matrix implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
Comparison with a Student distribution false
Comparison with an Exponential distribution false
Comparison with itself true
Comparison with a clone true
Comparison with another member false

*** Case 2 ***

Parameters collection=[[mu_0 : 0, sigma_0 : 1],[mu_1 : 0, sigma_1 : 2],[R_1_0 : 0.5]]
Standard representative=Normal(mu = [0,0], sigma = [1,1], R = [[ 1 0 ]
 [ 0 1 ]])
Distribution class=Normal name=Normal dimension=2 mean=class=Point name=Unnamed dimension=2 values=[0,0] sigma=class=Point name=Unnamed dimension=2 values=[1,2] correlationMatrix=class=CorrelationMatrix dimension=2 implementation=class=MatrixImplementation name=Unnamed rows=2 columns=2 values=[1,0.5,0.5,1]
Distribution Normal(mu = [0,0], sigma = [1,2], R = [[ 1   0.5 ]
 [ 0.5 1   ]])
Elliptical = true
Continuous = true
oneRealization=class=Point name=Unnamed dimension=2 values=[1.10883,-1.07312]
oneSample first=class=Point name=Unnamed dimension=2 values=[-0.667474,-0.628346] last=class=Point name=Unnamed dimension=2 values=[-0.054982,-0.48522]
mean=class=Point name=Unnamed dimension=2 values=[-0.00303261,0.0232072]
covariance=class=CovarianceMatrix dimension=2 implementation=class=MatrixImplementation name=Unnamed rows=2 columns=2 values=[1.00407,1.01388,1.01388,4.10035]
Point= class=Point name=Unnamed dimension=2 values=[0.5,0.5]
ddf     =class=Point name=Unnamed dimension=2 values=[-0.0405455,0]
log pdf=-2.5122
pdf     =0.081091
cdf=0.48677
survival=0.1966
Inverse survival=class=Point name=Unnamed dimension=2 values=[-1.91633,-3.83266]
Survival(inverse survival)=0.95
characteristic function=(0.41686,0)
log characteristic function=(-0.875,0)
pdf gradient     =class=Point name=Unnamed dimension=5 values=[0.0405455,-0.0608183,0,-0.0405455,0.0540607]
pdf gradient (FD)=class=Point name=Unnamed dimension=4 values=[0.0405455,0,-0.0608183,-0.0405455]
cdf gradient     =class=Point name=Unnamed dimension=5 values=[-0.176033,-0.0880163,-0.12905,-0.0322625,0.162182]
quantile=class=Point name=Unnamed dimension=2 values=[1.916,3.833]
cdf(quantile)=0.95
Minimum volume interval=class=Interval name=Unnamed dimension=2 lower bound=class=Point name=Unnamed dimension=2 values=[-2.21213,-4.42426] upper bound=class=Point name=Unnamed dimension=2 values=[2.21213,4.42426] finite lower bound=[1,1] finite upper bound=[1,1]
threshold=0.97304
Minimum volume level set=class=LevelSet name=Unnamed dimension=2 function=class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[Marginal 1,Marginal 2,-logPDF] evaluationImplementation=MinimumVolumeLevelSetEvaluation(Normal(mu = [0,0], sigma = [1,2], R = [[ 1   0.5 ]
 [ 0.5 1   ]])) gradientImplementation=MinimumVolumeLevelSetGradient(Normal(mu = [0,0], sigma = [1,2], R = [[ 1   0.5 ]
 [ 0.5 1   ]])) hessianImplementation=class=CenteredFiniteDifferenceHessian name=Unnamed epsilon=class=Point name=Unnamed dimension=2 values=[0.0001,0.0001] evaluation=MinimumVolumeLevelSetEvaluation(Normal(mu = [0,0], sigma = [1,2], R = [[ 1   0.5 ]
 [ 0.5 1   ]])) level=5.38292
beta=0.0045944
Bilateral confidence interval=class=Interval name=Unnamed dimension=2 lower bound=class=Point name=Unnamed dimension=2 values=[-2.21213,-4.42426] upper bound=class=Point name=Unnamed dimension=2 values=[2.21213,4.42426] finite lower bound=[1,1] finite upper bound=[1,1]
beta=0.97304
Unilateral confidence interval (lower tail)=class=Interval name=Unnamed dimension=2 lower bound=class=Point name=Unnamed dimension=2 values=[-7.65063,-15.3013] upper bound=class=Point name=Unnamed dimension=2 values=[1.91633,3.83266] finite lower bound=[1,1] finite upper bound=[1,1]
beta=0.97234
Unilateral confidence interval (upper tail)=class=Interval name=Unnamed dimension=2 lower bound=class=Point name=Unnamed dimension=2 values=[-1.91633,-3.83266] upper bound=class=Point name=Unnamed dimension=2 values=[7.65063,15.3013] finite lower bound=[1,1] finite upper bound=[1,1]
beta=0.97234
entropy=3.3872
entropy (MC)=3.386
mean=class=Point name=Unnamed dimension=2 values=[0,0]
standard deviation=class=Point name=Unnamed dimension=2 values=[1,2]
skewness=class=Point name=Unnamed dimension=2 values=[0,0]
kurtosis=class=Point name=Unnamed dimension=2 values=[3,3]
covariance=class=CovarianceMatrix dimension=2 implementation=class=MatrixImplementation name=Unnamed rows=2 columns=2 values=[1,1,1,4]
correlation=class=CovarianceMatrix dimension=2 implementation=class=MatrixImplementation name=Unnamed rows=2 columns=2 values=[1,0.5,0.5,1]
spearman=class=CovarianceMatrix dimension=2 implementation=class=MatrixImplementation name=Unnamed rows=2 columns=2 values=[1,0.482584,0.482584,1]
kendall=class=CovarianceMatrix dimension=2 implementation=class=MatrixImplementation name=Unnamed rows=2 columns=2 values=[1,0.333333,0.333333,1]
parameters=[[mu_0 : 0, sigma_0 : 1],[mu_1 : 0, sigma_1 : 2],[R_1_0 : 0.5]]
Standard representative=Normal(mu = [0,0], sigma = [1,1], R = [[ 1 0 ]
 [ 0 1 ]])
density generator=0.12395
pdf via density generator=0.081091
density generator derivative     =-0.061975
density generator derivative (FD)=-0.061975
density generator second derivative     =0.030987
density generator second derivative (FD)=0.030987
Radial CDF(2)=0.86466
conditional PDF=0.22427
conditional CDF=0.59132
conditional quantile=0.63881
sequential conditional PDF=class=Point name=Unnamed dimension=2 values=[0.129518,0.19497]
sequential conditional CDF(class=Point name=Unnamed dimension=2 values=[1.5,2.5])=class=Point name=Unnamed dimension=2 values=[0.933193,0.718149]
sequential conditional quantile(class=Point name=Unnamed dimension=2 values=[0.933193,0.718149])=class=Point name=Unnamed dimension=2 values=[1.5,2.5]
margin=class=Normal name=Normal dimension=1 mean=class=Point name=Unnamed dimension=1 values=[0] sigma=class=Point name=Unnamed dimension=1 values=[1] correlationMatrix=class=CorrelationMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
margin PDF=0.35207
margin CDF=0.69146
margin quantile=class=Point name=Unnamed dimension=1 values=[1.64485]
margin realization=class=Point name=Unnamed dimension=1 values=[-1.62343]
margin=class=Normal name=Normal dimension=1 mean=class=Point name=Unnamed dimension=1 values=[0] sigma=class=Point name=Unnamed dimension=1 values=[2] correlationMatrix=class=CorrelationMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
margin PDF=0.19333
margin CDF=0.59871
margin quantile=class=Point name=Unnamed dimension=1 values=[3.28971]
margin realization=class=Point name=Unnamed dimension=1 values=[-2.18704]
indices=[1,0]
margins=class=Normal name=Normal dimension=2 mean=class=Point name=Unnamed dimension=2 values=[0,0] sigma=class=Point name=Unnamed dimension=2 values=[2,1] correlationMatrix=class=CorrelationMatrix dimension=2 implementation=class=MatrixImplementation name=Unnamed rows=2 columns=2 values=[1,0.5,0.5,1]
margins PDF=0.081091
margins CDF=0.48677
margins quantile=class=Point name=Unnamed dimension=2 values=[3.83266,1.91633]
margins CDF(quantile)=0.95
margins realization=class=Point name=Unnamed dimension=2 values=[-0.422897,0.902554]
chol=class=Matrix implementation=class=MatrixImplementation name=Unnamed rows=2 columns=2 values=[1,1,0,1.73205]
chol*t(chol)=class=Matrix implementation=class=MatrixImplementation name=Unnamed rows=2 columns=2 values=[1,1,1,4]
Comparison with a Student distribution false
Comparison with an Exponential distribution false
Comparison with itself true
Comparison with a clone true
Comparison with another member false

*** Case 3 ***

Parameters collection=[[mu_0 : 0, sigma_0 : 1],[mu_1 : 0, sigma_1 : 2],[mu_2 : 0, sigma_2 : 3],[R_1_0 : 0.5, R_2_0 : 0, R_2_1 : 0.5]]
Standard representative=Normal(mu = [0,0,0], sigma = [1,1,1], R = [[ 1 0 0 ]
 [ 0 1 0 ]
 [ 0 0 1 ]])
Distribution class=Normal name=Normal dimension=3 mean=class=Point name=Unnamed dimension=3 values=[0,0,0] sigma=class=Point name=Unnamed dimension=3 values=[1,2,3] correlationMatrix=class=CorrelationMatrix dimension=3 implementation=class=MatrixImplementation name=Unnamed rows=3 columns=3 values=[1,0.5,0,0.5,1,0.5,0,0.5,1]
Distribution Normal(mu = [0,0,0], sigma = [1,2,3], R = [[ 1   0.5 0   ]
 [ 0.5 1   0.5 ]
 [ 0   0.5 1   ]])
Elliptical = true
Continuous = true
oneRealization=class=Point name=Unnamed dimension=3 values=[-0.245183,0.945252,3.56944]
oneSample first=class=Point name=Unnamed dimension=3 values=[-0.0267208,-1.04332,3.85504] last=class=Point name=Unnamed dimension=3 values=[-0.613991,0.279132,0.114201]
mean=class=Point name=Unnamed dimension=3 values=[-0.000853476,0.00793713,0.00692681]
covariance=class=CovarianceMatrix dimension=3 implementation=class=MatrixImplementation name=Unnamed rows=3 columns=3 values=[0.994158,1.00338,0.0219978,1.00338,4.02393,3.09495,0.0219978,3.09495,9.24621]
Point= class=Point name=Unnamed dimension=3 values=[0.5,0.5,0.5]
ddf     =class=Point name=Unnamed dimension=3 values=[-0.00754529,0.0010779,-0.0010779]
log pdf=-4.3478
pdf     =0.012935
cdf=0.32981
survival=0.11135
Inverse survival=class=Point name=Unnamed dimension=3 values=[-2.07982,-4.15964,-6.23946]
Survival(inverse survival)=0.95
characteristic function=(0.063928,0)
log characteristic function=(-2.75,0)
pdf gradient     =class=Point name=Unnamed dimension=9 values=[0.00754529,-0.00916214,-0.0010779,-0.00673687,0.0010779,-0.00413195,0.0116772,-0.00458107,0.0123958]
pdf gradient (FD)=class=Point name=Unnamed dimension=6 values=[0.00754529,-0.0010779,0.0010779,-0.00916214,-0.00673687,-0.00413195]
cdf gradient     =class=Point name=Unnamed dimension=9 values=[-0.133608,-0.0668041,-0.0575624,-0.0143906,-0.0635446,-0.0105908,0.094207,0.0627608,0.121528]
quantile=class=Point name=Unnamed dimension=3 values=[2.08,4.16,6.239]
cdf(quantile)=0.95
entropy=5.702
entropy (MC)=5.7023
mean=class=Point name=Unnamed dimension=3 values=[0,0,0]
standard deviation=class=Point name=Unnamed dimension=3 values=[1,2,3]
skewness=class=Point name=Unnamed dimension=3 values=[0,0,0]
kurtosis=class=Point name=Unnamed dimension=3 values=[3,3,3]
covariance=class=CovarianceMatrix dimension=3 implementation=class=MatrixImplementation name=Unnamed rows=3 columns=3 values=[1,1,0,1,4,3,0,3,9]
correlation=class=CovarianceMatrix dimension=3 implementation=class=MatrixImplementation name=Unnamed rows=3 columns=3 values=[1,0.5,0,0.5,1,0.5,0,0.5,1]
spearman=class=CovarianceMatrix dimension=3 implementation=class=MatrixImplementation name=Unnamed rows=3 columns=3 values=[1,0.482584,0,0.482584,1,0.482584,0,0.482584,1]
kendall=class=CovarianceMatrix dimension=3 implementation=class=MatrixImplementation name=Unnamed rows=3 columns=3 values=[1,0.333333,0,0.333333,1,0.333333,0,0.333333,1]
parameters=[[mu_0 : 0, sigma_0 : 1],[mu_1 : 0, sigma_1 : 2],[mu_2 : 0, sigma_2 : 3],[R_1_0 : 0.5, R_2_0 : 0, R_2_1 : 0.5]]
Standard representative=Normal(mu = [0,0,0], sigma = [1,1,1], R = [[ 1 0 0 ]
 [ 0 1 0 ]
 [ 0 0 1 ]])
density generator=0.043638
pdf via density generator=0.012935
density generator derivative     =-0.021819
density generator derivative (FD)=-0.021819
density generator second derivative     =0.01091
density generator second derivative (FD)=0.01091
Radial CDF(2)=0.73854
conditional PDF=0.15805
conditional CDF=0.59675
conditional quantile=0.62057
sequential conditional PDF=class=Point name=Unnamed dimension=3 values=[0.129518,0.19497,0.0967474]
sequential conditional CDF(class=Point name=Unnamed dimension=3 values=[1.5,2.5,3.5])=class=Point name=Unnamed dimension=3 values=[0.933193,0.718149,0.846283]
sequential conditional quantile(class=Point name=Unnamed dimension=3 values=[0.933193,0.718149,0.846283])=class=Point name=Unnamed dimension=3 values=[1.5,2.5,3.5]
margin=class=Normal name=Normal dimension=1 mean=class=Point name=Unnamed dimension=1 values=[0] sigma=class=Point name=Unnamed dimension=1 values=[1] correlationMatrix=class=CorrelationMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
margin PDF=0.35207
margin CDF=0.69146
margin quantile=class=Point name=Unnamed dimension=1 values=[1.64485]
margin realization=class=Point name=Unnamed dimension=1 values=[-0.0359499]
margin=class=Normal name=Normal dimension=1 mean=class=Point name=Unnamed dimension=1 values=[0] sigma=class=Point name=Unnamed dimension=1 values=[2] correlationMatrix=class=CorrelationMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
margin PDF=0.19333
margin CDF=0.59871
margin quantile=class=Point name=Unnamed dimension=1 values=[3.28971]
margin realization=class=Point name=Unnamed dimension=1 values=[-2.53725]
margin=class=Normal name=Normal dimension=1 mean=class=Point name=Unnamed dimension=1 values=[0] sigma=class=Point name=Unnamed dimension=1 values=[3] correlationMatrix=class=CorrelationMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
margin PDF=0.13115
margin CDF=0.56618
margin quantile=class=Point name=Unnamed dimension=1 values=[4.93456]
margin realization=class=Point name=Unnamed dimension=1 values=[0.822214]
indices=[1,0]
margins=class=Normal name=Normal dimension=2 mean=class=Point name=Unnamed dimension=2 values=[0,0] sigma=class=Point name=Unnamed dimension=2 values=[2,1] correlationMatrix=class=CorrelationMatrix dimension=2 implementation=class=MatrixImplementation name=Unnamed rows=2 columns=2 values=[1,0.5,0.5,1]
margins PDF=0.081091
margins CDF=0.48677
margins quantile=class=Point name=Unnamed dimension=2 values=[3.83266,1.91633]
margins CDF(quantile)=0.95
margins realization=class=Point name=Unnamed dimension=2 values=[0.979474,1.35901]
chol=class=Matrix implementation=class=MatrixImplementation name=Unnamed rows=3 columns=3 values=[1,1,0,0,1.73205,1.73205,0,0,2.44949]
chol*t(chol)=class=Matrix implementation=class=MatrixImplementation name=Unnamed rows=3 columns=3 values=[1,1,0,1,4,3,0,3,9]
Comparison with a Student distribution false
Comparison with an Exponential distribution false
Comparison with itself true
Comparison with a clone true
Comparison with another member false

*** Case 4 ***

Parameters collection=[[mu_0 : 0, sigma_0 : 1],[mu_1 : 0, sigma_1 : 2],[mu_2 : 0, sigma_2 : 3],[mu_3 : 0, sigma_3 : 4],[R_1_0 : 0.5, R_2_0 : 0, R_2_1 : 0.5, R_3_0 : 0, R_3_1 : 0, R_3_2 : 0.5]]
Standard representative=Normal(mu = [0,0,0,0], sigma = [1,1,1,1], R = [[ 1 0 0 0 ]
 [ 0 1 0 0 ]
 [ 0 0 1 0 ]
 [ 0 0 0 1 ]])
Distribution class=Normal name=Normal dimension=4 mean=class=Point name=Unnamed dimension=4 values=[0,0,0,0] sigma=class=Point name=Unnamed dimension=4 values=[1,2,3,4] correlationMatrix=class=CorrelationMatrix dimension=4 implementation=class=MatrixImplementation name=Unnamed rows=4 columns=4 values=[1,0.5,0,0,0.5,1,0.5,0,0,0.5,1,0.5,0,0,0.5,1]
Distribution Normal(mu = [0,0,0,0], sigma = [1,2,3,4], R = [[ 1   0.5 0   0   ]
 [ 0.5 1   0.5 0   ]
 [ 0   0.5 1   0.5 ]
 [ 0   0   0.5 1   ]])
Elliptical = true
Continuous = true
oneRealization=class=Point name=Unnamed dimension=4 values=[1.29008,-0.0404617,0.42494,4.2962]
oneSample first=class=Point name=Unnamed dimension=4 values=[1.17224,1.62957,-1.99989,-6.8291] last=class=Point name=Unnamed dimension=4 values=[0.367599,2.58853,-0.289899,4.99267]
mean=class=Point name=Unnamed dimension=4 values=[0.0138666,0.0180498,0.0221654,0.0162702]
covariance=class=CovarianceMatrix dimension=4 implementation=class=MatrixImplementation name=Unnamed rows=4 columns=4 values=[0.970503,0.951581,-0.0277311,-0.0130839,0.951581,3.89801,2.90873,-0.0330447,-0.0277311,2.90873,8.89229,5.93811,-0.0130839,-0.0330447,5.93811,15.6673]
Point= class=Point name=Unnamed dimension=4 values=[0.5,0.5,0.5,0.5]
ddf     =class=Point name=Unnamed dimension=4 values=[-0.000951889,0.000135984,-0.000135984,0]
log pdf=-6.4181
pdf     =0.0016318
cdf=0.22145
survival=0.067873
characteristic function=(0.0019305,0)
log characteristic function=(-6.25,0)
pdf gradient     =class=Point name=Unnamed dimension=14 values=[0.000951889,-0.00115586,-0.000135984,-0.000849901,0.000135984,-0.000521272,0,-0.000407952,0.00179952,-0.00106747,0.0025429,0.000652724,-0.00130545,0.00195817]
pdf gradient (FD)=class=Point name=Unnamed dimension=8 values=[0.000951889,-0.000135984,0.000135984,0,-0.00115586,-0.000849901,-0.000521272,-0.000407952]
entropy=8.2722
entropy (MC)=8.2708
mean=class=Point name=Unnamed dimension=4 values=[0,0,0,0]
standard deviation=class=Point name=Unnamed dimension=4 values=[1,2,3,4]
skewness=class=Point name=Unnamed dimension=4 values=[0,0,0,0]
kurtosis=class=Point name=Unnamed dimension=4 values=[3,3,3,3]
covariance=class=CovarianceMatrix dimension=4 implementation=class=MatrixImplementation name=Unnamed rows=4 columns=4 values=[1,1,0,0,1,4,3,0,0,3,9,6,0,0,6,16]
correlation=class=CovarianceMatrix dimension=4 implementation=class=MatrixImplementation name=Unnamed rows=4 columns=4 values=[1,0.5,0,0,0.5,1,0.5,0,0,0.5,1,0.5,0,0,0.5,1]
spearman=class=CovarianceMatrix dimension=4 implementation=class=MatrixImplementation name=Unnamed rows=4 columns=4 values=[1,0.482584,0,0,0.482584,1,0.482584,0,0,0.482584,1,0.482584,0,0,0.482584,1]
kendall=class=CovarianceMatrix dimension=4 implementation=class=MatrixImplementation name=Unnamed rows=4 columns=4 values=[1,0.333333,0,0,0.333333,1,0.333333,0,0,0.333333,1,0.333333,0,0,0.333333,1]
parameters=[[mu_0 : 0, sigma_0 : 1],[mu_1 : 0, sigma_1 : 2],[mu_2 : 0, sigma_2 : 3],[mu_3 : 0, sigma_3 : 4],[R_1_0 : 0.5, R_2_0 : 0, R_2_1 : 0.5, R_3_0 : 0, R_3_1 : 0, R_3_2 : 0.5]]
Standard representative=Normal(mu = [0,0,0,0], sigma = [1,1,1,1], R = [[ 1 0 0 0 ]
 [ 0 1 0 0 ]
 [ 0 0 1 0 ]
 [ 0 0 0 1 ]])
density generator=0.015364
pdf via density generator=0.0016318
density generator derivative     =-0.0076818
density generator derivative (FD)=-0.0076818
density generator second derivative     =0.0038409
density generator second derivative (FD)=0.0038409
Radial CDF(2)=0.59399
conditional PDF=0.12515
conditional CDF=0.55033
conditional quantile=1.0012
sequential conditional PDF=class=Point name=Unnamed dimension=4 values=[0.129518,0.19497,0.0967474,0.103288]
sequential conditional CDF(class=Point name=Unnamed dimension=4 values=[1.5,2.5,3.5,4.5])=class=Point name=Unnamed dimension=4 values=[0.933193,0.718149,0.846283,0.736455]
sequential conditional quantile(class=Point name=Unnamed dimension=4 values=[0.933193,0.718149,0.846283,0.736455])=class=Point name=Unnamed dimension=4 values=[1.5,2.5,3.5,4.5]
margin=class=Normal name=Normal dimension=1 mean=class=Point name=Unnamed dimension=1 values=[0] sigma=class=Point name=Unnamed dimension=1 values=[1] correlationMatrix=class=CorrelationMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
margin PDF=0.35207
margin CDF=0.69146
margin quantile=class=Point name=Unnamed dimension=1 values=[1.64485]
margin realization=class=Point name=Unnamed dimension=1 values=[-0.989426]
margin=class=Normal name=Normal dimension=1 mean=class=Point name=Unnamed dimension=1 values=[0] sigma=class=Point name=Unnamed dimension=1 values=[2] correlationMatrix=class=CorrelationMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
margin PDF=0.19333
margin CDF=0.59871
margin quantile=class=Point name=Unnamed dimension=1 values=[3.28971]
margin realization=class=Point name=Unnamed dimension=1 values=[-2.65983]
margin=class=Normal name=Normal dimension=1 mean=class=Point name=Unnamed dimension=1 values=[0] sigma=class=Point name=Unnamed dimension=1 values=[3] correlationMatrix=class=CorrelationMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
margin PDF=0.13115
margin CDF=0.56618
margin quantile=class=Point name=Unnamed dimension=1 values=[4.93456]
margin realization=class=Point name=Unnamed dimension=1 values=[1.40108]
margin=class=Normal name=Normal dimension=1 mean=class=Point name=Unnamed dimension=1 values=[0] sigma=class=Point name=Unnamed dimension=1 values=[4] correlationMatrix=class=CorrelationMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
margin PDF=0.098959
margin CDF=0.54974
margin quantile=class=Point name=Unnamed dimension=1 values=[6.57941]
margin realization=class=Point name=Unnamed dimension=1 values=[7.03462]
indices=[1,0]
margins=class=Normal name=Normal dimension=2 mean=class=Point name=Unnamed dimension=2 values=[0,0] sigma=class=Point name=Unnamed dimension=2 values=[2,1] correlationMatrix=class=CorrelationMatrix dimension=2 implementation=class=MatrixImplementation name=Unnamed rows=2 columns=2 values=[1,0.5,0.5,1]
margins PDF=0.081091
margins CDF=0.48677
margins quantile=class=Point name=Unnamed dimension=2 values=[3.83266,1.91633]
margins CDF(quantile)=0.95
margins realization=class=Point name=Unnamed dimension=2 values=[-3.30128,-0.645538]
chol=class=Matrix implementation=class=MatrixImplementation name=Unnamed rows=4 columns=4 values=[1,1,0,0,0,1.73205,1.73205,0,0,0,2.44949,2.44949,0,0,0,3.16228]
chol*t(chol)=class=Matrix implementation=class=MatrixImplementation name=Unnamed rows=4 columns=4 values=[1,1,0,0,1,4,3,0,0,3,9,6,0,0,6,16]
Comparison with a Student distribution false
Comparison with an Exponential distribution false
Comparison with itself true
Comparison with a clone true
Comparison with another member false