1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
|
// -*- C++ -*-
/**
* @brief The test file of MonteCarlo class
*
* Copyright 2005-2025 Airbus-EDF-IMACS-ONERA-Phimeca
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "openturns/OT.hxx"
#include "openturns/OTtestcode.hxx"
using namespace OT;
using namespace OT::Test;
int main(int, char *[])
{
TESTPREAMBLE;
OStream fullprint(std::cout);
try
{
/* We create a numerical math function */
Description input(4);
input[0] = "E";
input[1] = "F";
input[2] = "L";
input[3] = "I";
SymbolicFunction myFunction(input, Description(1, "-F*L^3/(3*E*I)"));
UnsignedInteger dim = myFunction.getInputDimension();
/* We create a normal distribution point of dimension 1 */
Point mean(dim, 0.0);
mean[0] = 50.0; // E
mean[1] = 1.0; // F
mean[2] = 10.0; // L
mean[3] = 5.0; // I
Point sigma(dim, 1.0);
IdentityMatrix R(dim);
Normal myDistribution(mean, sigma, R);
/* We create a 'usual' RandomVector from the Distribution */
RandomVector vect(myDistribution);
/* We create a composite random vector */
MemoizeFunction fh(myFunction);
CompositeRandomVector output(fh, vect);
/* We create an Event from this RandomVector */
ThresholdEvent myEvent(output, Less(), -3.0);
/* We create a Monte Carlo algorithm */
MonteCarloExperiment experiment;
ProbabilitySimulationAlgorithm myAlgo(myEvent, experiment);
myAlgo.setMaximumOuterSampling(500);
myAlgo.setBlockSize(10);
myAlgo.setMaximumCoefficientOfVariation(0.05);
fullprint << "MonteCarlo=" << myAlgo << std::endl;
/* Perform the simulation */
myAlgo.run();
ProbabilitySimulationResult result(myAlgo.getResult());
fullprint << "MonteCarlo result=" << result << std::endl;
/* Compute sensitivity information */
fullprint << "mean point in event domain=" << result.getMeanPointInEventDomain() << std::endl;
fullprint << "importance factors=" << result.getImportanceFactors() << std::endl;
}
catch (TestFailed & ex)
{
std::cerr << ex << std::endl;
return ExitCode::Error;
}
return ExitCode::Success;
}
|